BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27540588)

  • 21. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production.
    Sadeghi S; Askari IB
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5469-5495. PubMed ID: 34420171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.
    Wu XY; Song TS; Zhu XJ; Wei P; Zhou CC
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2082-92. PubMed ID: 24404595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.
    Wu XY; Song TS; Zhu XJ; Wei P; Zhou CC
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2082-92. PubMed ID: 24026413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioelectrochemical conversion of CO
    Bajracharya S; Vanbroekhoven K; Buisman CJN; Strik DPBTB; Pant D
    Faraday Discuss; 2017 Sep; 202():433-449. PubMed ID: 28657636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon dioxide utilization via carbonate-promoted C-H carboxylation.
    Banerjee A; Dick GR; Yoshino T; Kanan MW
    Nature; 2016 Mar; 531(7593):215-9. PubMed ID: 26961655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.
    Lee SL; Ho LN; Ong SA; Wong YS; Voon CH; Khalik WF; Yusoff NA; Nordin N
    Chemosphere; 2018 Mar; 194():675-681. PubMed ID: 29247929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Influence of carboxylic carbon nanotube supported platinum catalyst on cathode oxygen reduction performance of MFC].
    Tu LX; Zhu NW; Wu PX; Li P; Wu JH
    Huan Jing Ke Xue; 2013 Apr; 34(4):1617-22. PubMed ID: 23798151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Fabrication of a Dual-Photoelectrode Fuel Cell towards Cost-Effective Electricity Production from Biomass.
    Zhang B; Fan W; Yao T; Liao S; Li A; Li D; Liu M; Shi J; Liao S; Li C
    ChemSusChem; 2017 Jan; 10(1):99-105. PubMed ID: 27860457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells.
    Cheng S; Wu J
    Bioelectrochemistry; 2013 Aug; 92():22-6. PubMed ID: 23567144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier.
    Liu W; Mu W; Liu M; Zhang X; Cai H; Deng Y
    Nat Commun; 2014; 5():3208. PubMed ID: 24504242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell.
    Ge B; Li K; Fu Z; Pu L; Zhang X
    Bioresour Technol; 2015 Nov; 195():180-7. PubMed ID: 26112347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges in developing direct carbon fuel cells.
    Jiang C; Ma J; Corre G; Jain SL; Irvine JTS
    Chem Soc Rev; 2017 May; 46(10):2889-2912. PubMed ID: 28422193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous flow membrane-less air cathode microbial fuel cell with spunbonded olefin diffusion layer.
    Tugtas AE; Cavdar P; Calli B
    Bioresour Technol; 2011 Nov; 102(22):10425-30. PubMed ID: 21963900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.
    Walker JC; Kasting JF
    Glob Planet Change; 1992; 97():151-89. PubMed ID: 11537854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration.
    Chiranjeevi P; Mohanakrishna G; Mohan SV
    Bioresour Technol; 2012 Nov; 124():364-70. PubMed ID: 22995167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fuel cell and electrolyzer using plastic waste directly as fuel.
    Hori T; Kobayashi K; Teranishi S; Nagao M; Hibino T
    Waste Manag; 2020 Feb; 102():30-39. PubMed ID: 31655328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance and emissions of a spark-ignited engine driven generator on biomass based syngas.
    Shah A; Srinivasan R; To SD; Columbus EP
    Bioresour Technol; 2010 Jun; 101(12):4656-61. PubMed ID: 20153639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.