These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27540726)

  • 21. Moving a hand-held object: Reconstruction of referent coordinate and apparent stiffness trajectories.
    Ambike S; Zhou T; Zatsiorsky VM; Latash ML
    Neuroscience; 2015 Jul; 298():336-56. PubMed ID: 25896800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Post-Trial Visual Feedback on Unintentional Force Drift During Isometric Finger Force Production Tasks.
    Balamurugan S; Dhanush R; Varadhan SKM
    Motor Control; 2022 Jan; 26(1):1-14. PubMed ID: 34891126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processes underlying unintentional finger-force changes in the absence of visual feedback.
    Ambike S; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2015 Mar; 233(3):711-21. PubMed ID: 25417192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic, Unintended Drifts in the Cyclic Force Produced with the Fingertips.
    Ambike S; Mattos D; Zatsiorsky V; Latash M
    Motor Control; 2018 Jan; 22(1):82-99. PubMed ID: 28338400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two classes of action-stabilizing synergies reflecting spinal and supraspinal circuitry.
    De SD; Ricotta JM; Benamati A; Latash ML
    J Neurophysiol; 2024 Feb; 131(2):152-165. PubMed ID: 38116603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finger force changes in the absence of visual feedback in patients with Parkinson's disease.
    Jo HJ; Ambike S; Lewis MM; Huang X; Latash ML
    Clin Neurophysiol; 2016 Jan; 127(1):684-692. PubMed ID: 26072437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three Levels of Neural Control Contributing to Performance-stabilizing Synergies in Multi-finger Tasks.
    Benamati A; Ricotta JM; De SD; Latash ML
    Neuroscience; 2024 Jul; 551():262-275. PubMed ID: 38838976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expectation of movement generates contrasting changes in multifinger synergies in young and older adults.
    Tillman M; Ambike S
    Exp Brain Res; 2018 Oct; 236(10):2765-2780. PubMed ID: 30022260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is there a timing synergy during multi-finger production of quick force pulses?
    Latash ML; Shim JK; Zatsiorsky VM
    Exp Brain Res; 2004 Nov; 159(1):65-71. PubMed ID: 15480588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perceptual and Motor Effects of Muscle Co-activation in a Force Production Task.
    Cuadra C; Wojnicz W; Kozinc Z; Latash ML
    Neuroscience; 2020 Jun; 437():34-44. PubMed ID: 32335217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of finger force direction in the flexion-extension plane.
    Gao F; Latash ML; Zatsiorsky VM
    Exp Brain Res; 2005 Mar; 161(3):307-15. PubMed ID: 15726342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor equivalence during multi-finger accurate force production.
    Mattos D; Schöner G; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2015 Feb; 233(2):487-502. PubMed ID: 25344311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visuomotor and audiomotor processing in continuous force production of oral and manual effectors.
    Ofori E; Loucks TM; Sosnoff JJ
    J Mot Behav; 2012; 44(2):87-96. PubMed ID: 22364413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Is there a timing synergy during multi-finger production of quick force pulses?
    Latash ML; Shim JK; Zatsiorsky VM
    Psychopharmacology (Berl); 2004 Dec; 177(1-2):217-23. PubMed ID: 15625732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unintentional Force Drifts as Consequences of Indirect Force Control with Spatial Referent Coordinates.
    Abolins V; Latash ML
    Neuroscience; 2022 Jan; 481():156-165. PubMed ID: 34774968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Individual preferences in motor coordination seen across the two hands: relations to movement stability and optimality.
    de Freitas PB; Freitas SMSF; Lewis MM; Huang X; Latash ML
    Exp Brain Res; 2019 Jan; 237(1):1-13. PubMed ID: 30298294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visually guided targeting enhances bilateral force variability in healthy older adults.
    Kenway LC; Bisset LM; Kavanagh JJ
    Neurobiol Aging; 2016 Jan; 37():127-137. PubMed ID: 26521134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feedback about isometric force production yields more random variations.
    Athreya DN; Van Orden G; Riley MA
    Neurosci Lett; 2012 Mar; 513(1):37-41. PubMed ID: 22342910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-finger interaction during involuntary and voluntary single finger force changes.
    Martin JR; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2011 Feb; 208(3):423-35. PubMed ID: 21104236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unintentional force drifts across the human fingers: implications for the neural control of finger tasks.
    Abolins V; Latash ML
    Exp Brain Res; 2022 Mar; 240(3):751-761. PubMed ID: 35022805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.