BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27541502)

  • 1. Liquid Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries.
    Liu Y; He X; Hanlon D; Harvey A; Coleman JN; Li Y
    ACS Nano; 2016 Sep; 10(9):8821-8. PubMed ID: 27541502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.
    Liu Y; He X; Hanlon D; Harvey A; Khan U; Li Y; Coleman JN
    ACS Nano; 2016 Jun; 10(6):5980-90. PubMed ID: 27203558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powder exfoliated MoS
    Li Y; Chang K; Shangguan E; Guo D; Zhou W; Hou Y; Tang H; Li B; Chang Z
    Nanoscale; 2019 Jan; 11(4):1887-1900. PubMed ID: 30643912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium-Sulfur Battery Composite Cathodes.
    Li M; Carter R; Douglas A; Oakes L; Pint CL
    ACS Nano; 2017 May; 11(5):4877-4884. PubMed ID: 28452494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture.
    Li C; Zhu L; Qi S; Ge W; Ma W; Zhao Y; Huang R; Xu L; Qian Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49607-49616. PubMed ID: 33104326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-Free, High-Capacity and Long Cycle Life 1D-2D NiMoO
    Li Z; Zhan X; Zhu W; Qi S; Braun PV
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44593-44600. PubMed ID: 31682756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Solution Processing MoS
    Chao Y; Wang K; Jalili R; Morlando A; Qin C; Vijayakumar A; Wang C; Wallace GG
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46746-46755. PubMed ID: 31738045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exfoliated transition metal dichalcogenide nanosheets for supercapacitor and sodium ion battery applications.
    Mukherjee S; Turnley J; Mansfield E; Holm J; Soares D; David L; Singh G
    R Soc Open Sci; 2019 Aug; 6(8):190437. PubMed ID: 31598243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.
    Dörr TS; Fleischmann S; Zeiger M; Grobelsek I; de Oliveira PW; Presser V
    Chemistry; 2018 Apr; 24(24):6358-6363. PubMed ID: 29508934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries.
    Yan L; Liu J; Wang Q; Sun M; Jiang Z; Liang C; Pan F; Lin Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38159-38164. PubMed ID: 29053916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage.
    Chen Z; Chen J; Bu F; Agboola PO; Shakir I; Xu Y
    ACS Nano; 2018 Dec; 12(12):12879-12887. PubMed ID: 30525431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries.
    Wang B; Ryu J; Choi S; Song G; Hong D; Hwang C; Chen X; Wang B; Li W; Song HK; Park S; Ruoff RS
    ACS Nano; 2018 Feb; 12(2):1739-1746. PubMed ID: 29350526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity.
    Jiang L; Lin B; Li X; Song X; Xia H; Li L; Zeng H
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2680-7. PubMed ID: 26761564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries.
    Pei F; Lin L; Ou D; Zheng Z; Mo S; Fang X; Zheng N
    Nat Commun; 2017 Sep; 8(1):482. PubMed ID: 28883525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of MoS
    Zhao H; Wu H; Wu J; Li J; Wang Y; Zhang Y; Liu H
    J Colloid Interface Sci; 2019 Sep; 552():554-562. PubMed ID: 31154248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-loading Fe
    Wang Y; Guo J; Li L; Ge Y; Li B; Zhang Y; Shang Y; Cao A
    Nanotechnology; 2017 Aug; 28(34):345703. PubMed ID: 28631625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable fabrication of free-standing and integrated electrodes with commercial level of areal capacity for aqueous zinc-ion batteries.
    Zhang G; Zhou W; Chen M; Wang Q; Li A; Han X; Tian Q; Xu J; Chen J
    J Colloid Interface Sci; 2024 Mar; 657():263-271. PubMed ID: 38041971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertically oriented MoS
    Patel MD; Cha E; Choudhary N; Kang C; Lee W; Hwang JY; Choi W
    Nanotechnology; 2016 Dec; 27(49):495401. PubMed ID: 27827350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Zheng S; Tian Y; Li W; Wang B
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45526-45532. PubMed ID: 36166400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of ultrathin MoS₂ nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes.
    Zhang S; Yu X; Yu H; Chen Y; Gao P; Li C; Zhu C
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21880-5. PubMed ID: 25479568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.