These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27541630)

  • 1. 3D Statistical Shape Models Incorporating Landmark-Wise Random Regression Forests for Omni-Directional Landmark Detection.
    Norajitra T; Maier-Hein KH
    IEEE Trans Med Imaging; 2017 Jan; 36(1):155-168. PubMed ID: 27541630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing boundary detection via Simulated Search with applications to multi-modal heart segmentation.
    Peters J; Ecabert O; Meyer C; Kneser R; Weese J
    Med Image Anal; 2010 Feb; 14(1):70-84. PubMed ID: 19931481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.
    Ben Younes L; Nakajima Y; Saito T
    Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):189-96. PubMed ID: 24101434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.
    Shao Y; Gao Y; Wang Q; Yang X; Shen D
    Med Image Anal; 2015 Dec; 26(1):345-56. PubMed ID: 26439938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G
    Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
    He B; Huang C; Sharp G; Zhou S; Hu Q; Fang C; Fan Y; Jia F
    Med Phys; 2016 May; 43(5):2421. PubMed ID: 27147353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests.
    Gao Y; Shao Y; Lian J; Wang AZ; Chen RC; Shen D
    IEEE Trans Med Imaging; 2016 Jun; 35(6):1532-43. PubMed ID: 26800531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generalized active shape model for segmentation of liver in low-contrast CT volumes.
    Esfandiarkhani M; Foruzan AH
    Comput Biol Med; 2017 Mar; 82():59-70. PubMed ID: 28161593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.
    Lu P; Xia J; Li Z; Xiong J; Yang J; Zhou S; Wang L; Chen M; Wang C
    Biomed Eng Online; 2016 Nov; 15(1):120. PubMed ID: 27825346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D liver segmentation using multiple region appearances and graph cuts.
    Peng J; Hu P; Lu F; Peng Z; Kong D; Zhang H
    Med Phys; 2015 Dec; 42(12):6840-52. PubMed ID: 26632041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model.
    Okada T; Shimada R; Hori M; Nakamoto M; Chen YW; Nakamura H; Sato Y
    Acad Radiol; 2008 Nov; 15(11):1390-403. PubMed ID: 18995190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stratified Decision Forests for Accurate Anatomical Landmark Localization in Cardiac Images.
    Oktay O; Bai W; Guerrero R; Rajchl M; de Marvao A; O'Regan DP; Cook SA; Heinrich MP; Glocker B; Rueckert D
    IEEE Trans Med Imaging; 2017 Jan; 36(1):332-342. PubMed ID: 28055830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation.
    Shi C; Cheng Y; Wang J; Wang Y; Mori K; Tamura S
    Med Image Anal; 2017 May; 38():30-49. PubMed ID: 28279915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling.
    Şener E; Mumcuoglu EU; Hamcan S
    Comput Methods Programs Biomed; 2016 Feb; 124():31-44. PubMed ID: 26574298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated liver segmentation from a postmortem CT scan based on a statistical shape model.
    Saito A; Yamamoto S; Nawano S; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):205-221. PubMed ID: 27659283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landmark constellation models for medical image content identification and localization.
    Hansis E; Lorenz C
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1285-95. PubMed ID: 26662202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans.
    Almeida DF; Ruben RB; Folgado J; Fernandes PR; Audenaert E; Verhegghe B; De Beule M
    Med Eng Phys; 2016 Dec; 38(12):1474-1480. PubMed ID: 27751655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.