BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27541725)

  • 1. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.
    Juriga D; Nagy K; Jedlovszky-Hajdú A; Perczel-Kovách K; Chen YM; Varga G; Zrínyi M
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23463-76. PubMed ID: 27541725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery.
    Juriga D; Sipos E; Hegedűs O; Varga G; Zrínyi M; Nagy KS; Jedlovszky-Hajdú A
    Beilstein J Nanotechnol; 2019; 10():2579-2593. PubMed ID: 31921537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and swelling properties of novel pH-sensitive poly(aspartic acid) gels.
    Gyenes T; Torma V; Gyarmati B; Zrínyi M
    Acta Biomater; 2008 May; 4(3):733-44. PubMed ID: 18280800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free thiol groups on poly(aspartamide) based hydrogels facilitate tooth-derived progenitor cell proliferation and differentiation.
    Hegedűs O; Juriga D; Sipos E; Voniatis C; Juhász Á; Idrissi A; Zrínyi M; Varga G; Jedlovszky-Hajdú A; Nagy KS
    PLoS One; 2019; 14(12):e0226363. PubMed ID: 31856233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration.
    Kim S; Chung EH; Gilbert M; Healy KE
    J Biomed Mater Res A; 2005 Oct; 75(1):73-88. PubMed ID: 16049978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.
    Behravesh E; Zygourakis K; Mikos AG
    J Biomed Mater Res A; 2003 May; 65(2):260-70. PubMed ID: 12734821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ gelation of thiolated poly(aspartic acid) derivatives through oxidant-free disulfide formation for ophthalmic drug delivery.
    Szilágyi BÁ; Gyarmati B; Kiss EL; Budai-Szűcs M; Misra A; Csányi E; László K; Szilágyi A
    Colloids Surf B Biointerfaces; 2023 May; 225():113254. PubMed ID: 36996632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume change of double cross-linked poly(aspartic acid) hydrogels induced by cleavage of one of the crosslinks.
    Zrinyi M; Gyenes T; Juriga D; Kim JH
    Acta Biomater; 2013 Feb; 9(2):5122-31. PubMed ID: 22975627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
    Zhang L; Rakotondradany F; Myles AJ; Fenniri H; Webster TJ
    Biomaterials; 2009 Mar; 30(7):1309-20. PubMed ID: 19073342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.
    Lu C; Wang X; Wu G; Wang J; Wang Y; Gao H; Ma J
    J Biomed Mater Res A; 2014 Mar; 102(3):628-38. PubMed ID: 23554110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth.
    Akdemir ZS; Akçakaya H; Kahraman MV; Ceyhan T; Kayaman-Apohan N; Güngör A
    Macromol Biosci; 2008 Sep; 8(9):852-62. PubMed ID: 18504803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications.
    Adelnia H; Tran HDN; Little PJ; Blakey I; Ta HT
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2083-2105. PubMed ID: 33797239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds.
    Shirbin SJ; Karimi F; Chan NJ; Heath DE; Qiao GG
    Biomacromolecules; 2016 Sep; 17(9):2981-91. PubMed ID: 27472153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogels Based on Poly(aspartic acid): Synthesis and Applications.
    Adelnia H; Blakey I; Little PJ; Ta HT
    Front Chem; 2019; 7():755. PubMed ID: 31799235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells.
    Kudva AK; Luyten FP; Patterson J
    J Biomed Mater Res A; 2018 Jan; 106(1):33-42. PubMed ID: 28875574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.
    Gyarmati B; Mészár EZ; Kiss L; Deli MA; László K; Szilágyi A
    Acta Biomater; 2015 Aug; 22():32-8. PubMed ID: 25922304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture.
    Zhang J; Mujeeb A; Du Y; Lin J; Ge Z
    Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Three-Dimensional Cell Migration in Dopamine-Modified Poly(aspartic acid)-Based Hydrogels.
    Juriga D; Kalman EE; Toth K; Barczikai D; Szöllősi D; Földes A; Varga G; Zrinyi M; Jedlovszky-Hajdu A; Nagy KS
    Gels; 2022 Jan; 8(2):. PubMed ID: 35200447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(aspartic acid) Biohydrogel as the Base of a New Hybrid Conducting Material.
    Fontana-Escartín A; Ruano G; Silva FM; Estrany F; Puiggalí J; Alemán C; Torras J
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of γ-aminopropyltriethoxysilane cross-linked poly(aspartic acid) superabsorbent hydrogels without organic solvent.
    Meng H; Zhang X; Sun S; Tan T; Cao H
    J Biomater Sci Polym Ed; 2016; 27(2):133-43. PubMed ID: 26499167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.