These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27541964)

  • 1. Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth.
    Bairi P; Minami K; Hill JP; Nakanishi W; Shrestha LK; Liu C; Harano K; Nakamura E; Ariga K
    ACS Nano; 2016 Sep; 10(9):8796-802. PubMed ID: 27541964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic self-assembly for functional hierarchical nanostructured materials.
    Faul CF
    Acc Chem Res; 2014 Dec; 47(12):3428-38. PubMed ID: 25191750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicular Nanostructure Formation by Self-Assembly of Anisotropic Penta-phenol-Substituted Fullerene in Water.
    Mohanta V; Dey D; Ramakumar S; Patil S
    Langmuir; 2015 Dec; 31(50):13600-8. PubMed ID: 26597225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fullerene/porphyrin multicomponent nanostructures on Ag(110): from supramolecular self-assembly to extended copolymers.
    Sedona F; Di Marino M; Sambi M; Carofiglio T; Lubian E; Casarin M; Tondello E
    ACS Nano; 2010 Sep; 4(9):5147-54. PubMed ID: 20707317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular [60]fullerene liquid crystals formed by self-organized two-dimensional crystals.
    Zhang X; Hsu CH; Ren X; Gu Y; Song B; Sun HJ; Yang S; Chen E; Tu Y; Li X; Yang X; Li Y; Zhu X
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):114-7. PubMed ID: 25327867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregate nanostructures of organic molecular materials.
    Liu H; Xu J; Li Y; Li Y
    Acc Chem Res; 2010 Dec; 43(12):1496-508. PubMed ID: 20942417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway Complexity in Supramolecular Porphyrin Self-Assembly at an Immiscible Liquid-Liquid Interface.
    Robayo-Molina I; Molina-Osorio AF; Guinane L; Tofail SAM; Scanlon MD
    J Am Chem Soc; 2021 Jun; 143(24):9060-9069. PubMed ID: 34115491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed Hierarchical Hybrid Nanostructures from Fullerene-Dendrons and Pyrene-Dendrons.
    Park M; Kang DG; Yoon WJ; Choi YJ; Koo J; Lim SI; Jeong KU
    Small; 2018 Dec; 14(49):e1803291. PubMed ID: 30303613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy.
    Huang Z; Song W; Chen X
    Front Chem; 2020; 8():380. PubMed ID: 32528926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular self-assembled fullerene nanostructures.
    Georgakilas V; Pellarini F; Prato M; Guldi DM; Melle-Franco M; Zerbetto F
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5075-80. PubMed ID: 11959958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Templating the self-assembly of pristine carbon nanostructures in water.
    Mba M; Jiménez AI; Moretto A
    Chemistry; 2014 Apr; 20(14):3888-93. PubMed ID: 24644105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled nanodimensional supramolecular self-assembly of tetra-alkylated naphthalene diimide derivatives.
    Bhosale SV; Ghule NV; Al Kobaisi M; Kelson MM; Bhosale SV
    Chemistry; 2014 Aug; 20(34):10775-81. PubMed ID: 24864034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phthalocyanine-Carbon Nanostructure Materials Assembled through Supramolecular Interactions.
    Bottari G; Suanzes JA; Trukhina O; Torres T
    J Phys Chem Lett; 2011 Apr; 2(8):905-13. PubMed ID: 26295627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fullerene Nanoarchitectonics with Shape-Shifting.
    Ariga K; Shrestha LK
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in morphology control of supramolecular fullerene assemblies and its applications.
    Babu SS; Möhwald H; Nakanishi T
    Chem Soc Rev; 2010 Nov; 39(11):4021-35. PubMed ID: 20865187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fullerene on the dispersibility of nanostructured lipid particles and encapsulation in sterically stabilized emulsions.
    Kulkarni CV; Moinuddin Z; Agarwal Y
    J Colloid Interface Sci; 2016 Oct; 480():69-75. PubMed ID: 27416287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular soft and hard materials based on self-assembly algorithms of alkyl-conjugated fullerenes.
    Nakanishi T
    Chem Commun (Camb); 2010 May; 46(20):3425-36. PubMed ID: 20458394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.