These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 27542086)
1. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Lv L; Li D; Cui C; Zhao Y; Guo Z Biosens Bioelectron; 2017 Jan; 87():136-141. PubMed ID: 27542086 [TBL] [Abstract][Full Text] [Related]
2. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
3. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Wu H; Liu R; Kang X; Liang C; Lv L; Guo Z Mikrochim Acta; 2017 Dec; 185(1):27. PubMed ID: 29594393 [TBL] [Abstract][Full Text] [Related]
4. Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Guo Z; Ren J; Wang J; Wang E Talanta; 2011 Oct; 85(5):2517-21. PubMed ID: 21962677 [TBL] [Abstract][Full Text] [Related]
5. Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification. Wu K; Ma C; Zhao H; Chen M; Deng Z Food Chem; 2019 Mar; 277():273-278. PubMed ID: 30502145 [TBL] [Abstract][Full Text] [Related]
6. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Huang L; Wu J; Zheng L; Qian H; Xue F; Wu Y; Pan D; Adeloju SB; Chen W Anal Chem; 2013 Nov; 85(22):10842-9. PubMed ID: 24206525 [TBL] [Abstract][Full Text] [Related]
7. Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Biosens Bioelectron; 2012 Feb; 32(1):208-12. PubMed ID: 22221796 [TBL] [Abstract][Full Text] [Related]
8. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related]
9. Femtogram ultrasensitive aptasensor for the detection of Ochratoxin A. Ma W; Yin H; Xu L; Xu Z; Kuang H; Wang L; Xu C Biosens Bioelectron; 2013 Apr; 42():545-9. PubMed ID: 23261687 [TBL] [Abstract][Full Text] [Related]
10. Detection of ochratoxin A using molecular beacons and real-time PCR thermal cycler. Sanzani SM; Reverberi M; Fanelli C; Ippolito A Toxins (Basel); 2015 Mar; 7(3):812-20. PubMed ID: 25760080 [TBL] [Abstract][Full Text] [Related]
11. Label-Free G-Quadruplex Aptamer Fluorescence Assay for Ochratoxin A Using a Thioflavin T Probe. Wu K; Ma C; Zhao H; He H; Chen H Toxins (Basel); 2018 May; 10(5):. PubMed ID: 29757205 [TBL] [Abstract][Full Text] [Related]
12. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Mejri-Omrani N; Miodek A; Zribi B; Marrakchi M; Hamdi M; Marty JL; Korri-Youssoufi H Anal Chim Acta; 2016 May; 920():37-46. PubMed ID: 27114221 [TBL] [Abstract][Full Text] [Related]
13. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481 [TBL] [Abstract][Full Text] [Related]
14. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification. Ma C; Wu K; Zhao H; Liu H; Wang K; Xia K Mikrochim Acta; 2018 Jun; 185(7):347. PubMed ID: 29961128 [TBL] [Abstract][Full Text] [Related]
15. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Hun X; Liu F; Mei Z; Ma L; Wang Z; Luo X Biosens Bioelectron; 2013 Jan; 39(1):145-51. PubMed ID: 22938841 [TBL] [Abstract][Full Text] [Related]
16. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Talanta; 2013 Nov; 116():520-6. PubMed ID: 24148439 [TBL] [Abstract][Full Text] [Related]
17. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559 [TBL] [Abstract][Full Text] [Related]
18. PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Sheng L; Ren J; Miao Y; Wang J; Wang E Biosens Bioelectron; 2011 Apr; 26(8):3494-9. PubMed ID: 21334186 [TBL] [Abstract][Full Text] [Related]
19. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Wu J; Chu H; Mei Z; Deng Y; Xue F; Zheng L; Chen W Anal Chim Acta; 2012 Nov; 753():27-31. PubMed ID: 23107133 [TBL] [Abstract][Full Text] [Related]
20. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Tong P; Zhang L; Xu JJ; Chen HY Biosens Bioelectron; 2011 Nov; 29(1):97-101. PubMed ID: 21855315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]