These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 27542096)

  • 21. A climate adaptation strategy for Mai Po Inner Deep Bay Ramsar site: Steppingstone to climate proofing the East Asian-Australasian Flyway.
    Wikramanayake E; Or C; Costa F; Wen X; Cheung F; Shapiro A
    PLoS One; 2020; 15(10):e0239945. PubMed ID: 33085699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A climate change adaptation strategy for management of coastal marsh systems.
    Wigand C; Ardito T; Chaffee C; Ferguson W; Paton S; Raposa K; Vandemoer C; Watson E
    Estuaries Coast; 2017 Jan; 40(3):682-693. PubMed ID: 30271313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Living shorelines can enhance the nursery role of threatened estuarine habitats.
    Gittman RK; Peterson CH; Currin CA; Fodrie FJ; Piehler MF; Bruno JF
    Ecol Appl; 2016 Jan; 26(1):249-63. PubMed ID: 27039523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.
    Nelson JL; Zavaleta ES
    PLoS One; 2012; 7(8):e38558. PubMed ID: 22879873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.
    Dibble KL; Meyerson LA
    PLoS One; 2012; 7(9):e46161. PubMed ID: 23029423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient coastal landscapes: Rising sea level threatens salt marshes.
    Valiela I; Lloret J; Bowyer T; Miner S; Remsen D; Elmstrom E; Cogswell C; Robert Thieler E
    Sci Total Environ; 2018 Nov; 640-641():1148-1156. PubMed ID: 30021280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes.
    Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J
    Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating detection for salt-marsh songbirds during winter using the double-pass rope-drag technique.
    Watts BD; Smith FM; Hines CH
    PLoS One; 2023; 18(2):e0281535. PubMed ID: 36780533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controls on resilience and stability in a sediment-subsidized salt marsh.
    Stagg CL; Mendelssohn IA
    Ecol Appl; 2011 Jul; 21(5):1731-44. PubMed ID: 21830714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macroinvertebrate and fish populations in a restored impounded salt marsh 21 years after the reestablishment of tidal flooding.
    Swamy V; Fell PE; Body M; Keaney MB; Nyaku MK; McIlvain EC; Keen AL
    Environ Manage; 2002 Apr; 29(4):516-30. PubMed ID: 12071502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.
    Beckett LH; Baldwin AH; Kearney MS
    PLoS One; 2016; 11(7):e0159753. PubMed ID: 27467784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variability of fresh- and salt-water marshes characteristics on the west coast of France: a spatio-temporal assessment.
    Tortajada S; David V; Brahmia A; Dupuy C; Laniesse T; Parinet B; Pouget F; Rousseau F; Simon-Bouhet B; Robin FX
    Water Res; 2011 Aug; 45(14):4152-68. PubMed ID: 21689837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple stressors and the potential for synergistic loss of New England salt marshes.
    Crotty SM; Angelini C; Bertness MD
    PLoS One; 2017; 12(8):e0183058. PubMed ID: 28859097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A casualty of climate change? Loss of freshwater forest islands on Florida's Gulf Coast.
    Langston AK; Kaplan DA; Putz FE
    Glob Chang Biol; 2017 Dec; 23(12):5383-5397. PubMed ID: 28675588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecological structure and function in a restored versus natural salt marsh.
    Rezek RJ; Lebreton B; Sterba-Boatwright B; Beseres Pollack J
    PLoS One; 2017; 12(12):e0189871. PubMed ID: 29261795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the role of coastal habitats and sea-level rise in hurricane risk mitigation: An ecological economic assessment method and application to a business decision.
    Reddy SM; Guannel G; Griffin R; Faries J; Boucher T; Thompson M; Brenner J; Bernhardt J; Verutes G; Wood SA; Silver JA; Toft J; Rogers A; Maas A; Guerry A; Molnar J; DiMuro JL
    Integr Environ Assess Manag; 2016 Apr; 12(2):328-44. PubMed ID: 26123999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sea-level rise thresholds for stability of salt marshes in a riverine versus a marine dominated estuary.
    Wu W; Biber P; Mishra DR; Ghosh S
    Sci Total Environ; 2020 May; 718():137181. PubMed ID: 32105940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sediment starvation destroys New York City marshes' resistance to sea level rise.
    Peteet DM; Nichols J; Kenna T; Chang C; Browne J; Reza M; Kovari S; Liberman L; Stern-Protz S
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10281-10286. PubMed ID: 30249641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.