These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27542153)

  • 1. Micromagnet arrays enable precise manipulation of individual biological analyte-superparamagnetic bead complexes for separation and sensing.
    Rampini S; Li P; Lee GU
    Lab Chip; 2016 Oct; 16(19):3645-63. PubMed ID: 27542153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromagnet arrays for on-chip focusing, switching, and separation of superparamagnetic beads and single cells.
    Rampini S; Kilinc D; Li P; Monteil C; Gandhi D; Lee GU
    Lab Chip; 2015 Aug; 15(16):3370-9. PubMed ID: 26160691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of micromagnetic arrays for on-chip separation of superparamagnetic bead aggregates and detection of a model protein and double-stranded DNA analytes.
    Rampini S; Li P; Gandhi D; Mutas M; Ran YF; Carr M; Lee GU
    Sci Rep; 2021 Mar; 11(1):5302. PubMed ID: 33674645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications.
    Ehresmann A; Koch I; Holzinger D
    Sensors (Basel); 2015 Nov; 15(11):28854-88. PubMed ID: 26580625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient flowless separation of mixed microbead populations on periodic ferromagnetic surface structures.
    Sajjad U; Klingbeil F; Block F; Holländer RB; Bhatti S; Lage E; McCord J
    Lab Chip; 2021 Aug; 21(16):3174-3183. PubMed ID: 34190746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated open-cavity system for magnetic bead manipulation.
    Abu-Nimeh FT; Salem FM
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):31-42. PubMed ID: 23853277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinning magnetic trap for automated microfluidic assay systems.
    Verbarg J; Kamgar-Parsi K; Shields AR; Howell PB; Ligler FS
    Lab Chip; 2012 Apr; 12(10):1793-9. PubMed ID: 22344487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of pathogenic bacteria using periodic actuation.
    David S; Polonschii C; Gheorghiu M; Bratu D; Dobre A; Gheorghiu E
    Lab Chip; 2013 Aug; 13(16):3192-8. PubMed ID: 23807196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput precise particle transport at single-particle resolution in a three-dimensional magnetic field for highly sensitive bio-detection.
    Abedini-Nassab R; Shourabi R
    Sci Rep; 2022 Apr; 12(1):6380. PubMed ID: 35430583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel RNA extraction using magnetic beads and a droplet array.
    Shi X; Chen CH; Gao W; Chao SH; Meldrum DR
    Lab Chip; 2015 Feb; 15(4):1059-65. PubMed ID: 25519439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical detection of the magnetophoretic transport of superparamagnetic beads on a micromagnetic array.
    Gandhi D; Li P; Rampini S; Parent C; Lee GU
    Sci Rep; 2020 Jul; 10(1):12876. PubMed ID: 32733006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip bioanalysis with magnetic particles.
    Pamme N
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):436-43. PubMed ID: 22682892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High gradient magnetic field microstructures for magnetophoretic cell separation.
    Abdel Fattah AR; Ghosh S; Puri IK
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1027():194-9. PubMed ID: 27294532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced capture of magnetic microbeads using combination of reduced magnetic field strength and sequentially switched electroosmotic flow--a numerical study.
    Das D; Al-Rjoub MF; Banerjee RK
    J Biomech Eng; 2015 May; 137(5):051008. PubMed ID: 25662030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization.
    Gooneratne CP; Kodzius R; Li F; Foulds IG; Kosel J
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27571084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-enhanced nonlinear magnetophoresis for high-resolution bioseparation.
    Li P; Mahmood A; Lee GU
    Langmuir; 2011 May; 27(10):6496-503. PubMed ID: 21506584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of platelet responsiveness using antibody-coated magnetic beads for lab-on-a-chip applications.
    van Zijp HM; Schot CC; De Jong AM; Jongmans N; Van Holten TC; Roest M; Prins MW
    Platelets; 2012; 23(8):626-32. PubMed ID: 22309047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?
    González Fernández C; Gómez Pastora J; Basauri A; Fallanza M; Bringas E; Chalmers JJ; Ortiz I
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total serum IgE quantification by microfluidic ELISA using magnetic beads.
    Proczek G; Gassner AL; Busnel JM; Girault HH
    Anal Bioanal Chem; 2012 Mar; 402(8):2645-53. PubMed ID: 22021022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.