These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27542184)

  • 1. Needs, Pains, and Motivations in Autonomous Agents.
    Starzyk JA; Graham J; Puzio L
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2528-2540. PubMed ID: 27542184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.
    Ramezani Dooraki A; Lee DJ
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of autonomous problem solving process by dynamic construction of task models in multiple tasks environment.
    Ohigashi Y; Omori T
    Neural Netw; 2006 Oct; 19(8):1169-80. PubMed ID: 16989982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent Solutions to High-Dimensional Multitask Reinforcement Learning.
    Kelly S; Heywood MI
    Evol Comput; 2018; 26(3):347-380. PubMed ID: 29932363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Reinforcement-Learning Agent's Autonomy, Reliance on Memory and Internalisation of the Environment.
    Ingel A; Makkeh A; Corcoll O; Vicente R
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal and Autonomous Control Using Reinforcement Learning: A Survey.
    Kiumarsi B; Vamvoudakis KG; Modares H; Lewis FL
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2042-2062. PubMed ID: 29771662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunistic Behavior in Motivated Learning Agents.
    Graham J; Starzyk JA; Jachyra D
    IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1735-46. PubMed ID: 25291798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble algorithms in reinforcement learning.
    Wiering MA; van Hasselt H
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):930-6. PubMed ID: 18632380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Embodied Agent Learning Affordances With Intrinsic Motivations and Solving Extrinsic Tasks With Attention and One-Step Planning.
    Baldassarre G; Lord W; Granato G; Santucci VG
    Front Neurorobot; 2019; 13():45. PubMed ID: 31402859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mario Becomes Cognitive.
    Schrodt F; Kneissler J; Ehrenfeld S; Butz MV
    Top Cogn Sci; 2017 Apr; 9(2):343-373. PubMed ID: 28176449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior believability in virtual worlds: agents acting when they need to.
    Avradinis N; Panayiotopoulos T; Anastassakis G
    Springerplus; 2013 Dec; 2(1):246. PubMed ID: 23853745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Evaluation Methodology for Interactive Reinforcement Learning with Simulated Users.
    Bignold A; Cruz F; Dazeley R; Vamplew P; Foale C
    Biomimetics (Basel); 2021 Feb; 6(1):. PubMed ID: 33572399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of intrinsic motivations in attention allocation and shifting.
    Di Nocera D; Finzi A; Rossi S; Staffa M
    Front Psychol; 2014; 5():273. PubMed ID: 24744746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of On-Demand Shared Autonomous Vehicle Deployments Utilizing Reinforcement Learning.
    Meneses-Cime K; Aksun Guvenc B; Guvenc L
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. You Were Always on My Mind: Introducing Chef's Hat and COPPER for Personalized Reinforcement Learning.
    Barros P; Bloem AC; Hootsmans IM; Opheij LM; Toebosch RHA; Barakova E; Sciutti A
    Front Robot AI; 2021; 8():669990. PubMed ID: 34336935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.