These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27542184)

  • 21. Which is the best intrinsic motivation signal for learning multiple skills?
    Santucci VG; Baldassarre G; Mirolli M
    Front Neurorobot; 2013; 7():22. PubMed ID: 24273511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning and stabilization of altruistic behaviors in multi-agent systems by reciprocity.
    Zamora J; Millán JR; Murciano A
    Biol Cybern; 1998 Mar; 78(3):197-205. PubMed ID: 9602523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse Reinforcement Learning for Adversarial Apprentice Games.
    Lian B; Xue W; Lewis FL; Chai T
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4596-4609. PubMed ID: 34623278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sortation Control Using Multi-Agent Deep Reinforcement Learning in
    Kim JB; Choi HB; Hwang GY; Kim K; Hong YG; Han YH
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plugin Framework-Based Neuro-Symbolic Grounded Task Planning for Multi-Agent System.
    Moon J
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MOO-MDP: An Object-Oriented Representation for Cooperative Multiagent Reinforcement Learning.
    Da Silva FL; Glatt R; Costa AHR
    IEEE Trans Cybern; 2019 Feb; 49(2):567-579. PubMed ID: 29990289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coadaptive brain-machine interface via reinforcement learning.
    DiGiovanna J; Mahmoudi B; Fortes J; Principe JC; Sanchez JC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):54-64. PubMed ID: 19224719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic Input Deep Learning Control of Artificial Avatars in a Multi-Agent Joint Motor Task.
    Lombardi M; Liuzza D; di Bernardo M
    Front Robot AI; 2021; 8():665301. PubMed ID: 34434967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive Memory and
    Kumar M; Seo H
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54876-54884. PubMed ID: 36450008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchical intrinsically motivated agent planning behavior with dreaming in grid environments.
    Dzhivelikian E; Latyshev A; Kuderov P; Panov AI
    Brain Inform; 2022 Apr; 9(1):8. PubMed ID: 35366128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiagent cooperation and competition with deep reinforcement learning.
    Tampuu A; Matiisen T; Kodelja D; Kuzovkin I; Korjus K; Aru J; Aru J; Vicente R
    PLoS One; 2017; 12(4):e0172395. PubMed ID: 28380078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Implementation of Intelligent Agent Training Systems for Virtual Vehicles.
    Urrea C; Garrido F; Kern J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Off-Policy Reinforcement Learning for Synchronization in Multiagent Graphical Games.
    Li J; Modares H; Chai T; Lewis FL; Xie L
    IEEE Trans Neural Netw Learn Syst; 2017 Oct; 28(10):2434-2445. PubMed ID: 28436891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational neural model of goal-directed utterance selection.
    Klein M; Kamp H; Palm G; Doya K
    Neural Netw; 2010 Jun; 23(5):592-606. PubMed ID: 20116973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. V-Lab-a virtual laboratory for autonomous agents-SLA-based learning controllers.
    El-Osery AI; Burge J; Jamshidi M; Saba A; Fathi M; Akbarzadeh-T MR
    IEEE Trans Syst Man Cybern B Cybern; 2002; 32(6):791-803. PubMed ID: 18244885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperative Deep Reinforcement Learning for Large-Scale Traffic Grid Signal Control.
    Tan T; Bao F; Deng Y; Jin A; Dai Q; Wang J
    IEEE Trans Cybern; 2020 Jun; 50(6):2687-2700. PubMed ID: 30946688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.