BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27542308)

  • 1. Recent progress on nuclear receptor RORγ modulators.
    Cyr P; Bronner SM; Crawford JJ
    Bioorg Med Chem Lett; 2016 Sep; 26(18):4387-4393. PubMed ID: 27542308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzoxazepines Achieve Potent Suppression of IL-17 Release in Human T-Helper 17 (TH 17) Cells through an Induced-Fit Binding Mode to the Nuclear Receptor RORγ.
    Olsson RI; Xue Y; von Berg S; Aagaard A; McPheat J; Hansson EL; Bernström J; Hansson P; Jirholt J; Grindebacke H; Leffler A; Chen R; Xiong Y; Ge H; Hansson TG; Narjes F
    ChemMedChem; 2016 Jan; 11(2):207-16. PubMed ID: 26553345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small molecule mediated inhibition of RORγ-dependent gene expression and autoimmune disease pathology in vivo.
    Banerjee D; Zhao L; Wu L; Palanichamy A; Ergun A; Peng L; Quigley C; Hamann S; Dunstan R; Cullen P; Allaire N; Guertin K; Wang T; Chao J; Loh C; Fontenot JD
    Immunology; 2016 Apr; 147(4):399-413. PubMed ID: 26694902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulators of the nuclear receptor retinoic acid receptor-related orphan receptor-γ (RORγ or RORc).
    Fauber BP; Magnuson S
    J Med Chem; 2014 Jul; 57(14):5871-92. PubMed ID: 24502334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.
    Zhang W; Zhang J; Fang L; Zhou L; Wang S; Xiang Z; Li Y; Wisely B; Zhang G; An G; Wang Y; Leung S; Zhong Z
    Mol Pharmacol; 2012 Oct; 82(4):583-90. PubMed ID: 22700697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of 1-{4-[3-fluoro-4-((3s,6r)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor C (RORc or RORγ) inverse agonist.
    Fauber BP; René O; Deng Y; DeVoss J; Eidenschenk C; Everett C; Ganguli A; Gobbi A; Hawkins J; Johnson AR; La H; Lesch J; Lockey P; Norman M; Ouyang W; Summerhill S; Wong H
    J Med Chem; 2015 Jul; 58(13):5308-22. PubMed ID: 26061388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RORγ antagonists and inverse agonists: a patent review.
    Bronner SM; Zbieg JR; Crawford JJ
    Expert Opin Ther Pat; 2017 Jan; 27(1):101-112. PubMed ID: 27629281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cardenolides strophanthidin, digoxigenin and dihydroouabain act as activators of the human RORγ/RORγT receptors.
    Karaś K; Sałkowska A; Walczak-Drzewiecka A; Ryba K; Dastych J; Bachorz RA; Ratajewski M
    Toxicol Lett; 2018 Oct; 295():314-324. PubMed ID: 29981919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and Characterization of CD12681, a Potent RORγ Inverse Agonist, Preclinical Candidate for the Topical Treatment of Psoriasis.
    Ouvry G; Atrux-Tallau N; Bihl F; Bondu A; Bouix-Peter C; Carlavan I; Christin O; Cuadrado MJ; Defoin-Platel C; Deret S; Duvert D; Feret C; Forissier M; Fournier JF; Froude D; Hacini-Rachinel F; Harris CS; Hervouet C; Huguet H; Lafitte G; Luzy AP; Musicki B; Orfila D; Ozello B; Pascau C; Pascau J; Parnet V; Peluchon G; Pierre R; Piwnica D; Raffin C; Rossio P; Spiesse D; Taquet N; Thoreau E; Vatinel R; Vial E; Hennequin LF
    ChemMedChem; 2018 Feb; 13(4):321-337. PubMed ID: 29327456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F.
    Leppkes M; Becker C; Ivanov II; Hirth S; Wirtz S; Neufert C; Pouly S; Murphy AJ; Valenzuela DM; Yancopoulos GD; Becher B; Littman DR; Neurath MF
    Gastroenterology; 2009 Jan; 136(1):257-67. PubMed ID: 18992745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ.
    Kojima H; Takeda Y; Muromoto R; Takahashi M; Hirao T; Takeuchi S; Jetten AM; Matsuda T
    Toxicology; 2015 Mar; 329():32-9. PubMed ID: 25583575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterol metabolism controls T(H)17 differentiation by generating endogenous RORγ agonists.
    Hu X; Wang Y; Hao LY; Liu X; Lesch CA; Sanchez BM; Wendling JM; Morgan RW; Aicher TD; Carter LL; Toogood PL; Glick GD
    Nat Chem Biol; 2015 Feb; 11(2):141-7. PubMed ID: 25558972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of N-sulfonyl-tetrahydroquinolines as RORc inverse agonists.
    Fauber BP; Gobbi A; Savy P; Burton B; Deng Y; Everett C; La H; Johnson AR; Lockey P; Norman M; Wong H
    Bioorg Med Chem Lett; 2015 Oct; 25(19):4109-13. PubMed ID: 26321361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of imidazo[1,5-a]pyridines and -pyrimidines as potent and selective RORc inverse agonists.
    Fauber BP; Gobbi A; Robarge K; Zhou A; Barnard A; Cao J; Deng Y; Eidenschenk C; Everett C; Ganguli A; Hawkins J; Johnson AR; La H; Norman M; Salmon G; Summerhill S; Ouyang W; Tang W; Wong H
    Bioorg Med Chem Lett; 2015 Aug; 25(15):2907-12. PubMed ID: 26048793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of biaryl carboxylamides as potent RORγ inverse agonists.
    Chao J; Enyedy I; Van Vloten K; Marcotte D; Guertin K; Hutchings R; Powell N; Jones H; Bohnert T; Peng CC; Silvian L; Hong VS; Little K; Banerjee D; Peng L; Taveras A; Viney JL; Fontenot J
    Bioorg Med Chem Lett; 2015 Aug; 25(15):2991-7. PubMed ID: 26048806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of biaryls as RORγ inverse agonists by using structure-based design.
    Enyedy IJ; Powell NA; Caravella J; van Vloten K; Chao J; Banerjee D; Marcotte D; Silvian L; McKenzie A; Hong VS; Fontenot JD
    Bioorg Med Chem Lett; 2016 May; 26(10):2459-2463. PubMed ID: 27080181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of phenoxyindazoles and phenylthioindazoles as RORγ inverse agonists.
    Ouvry G; Bouix-Peter C; Ciesielski F; Chantalat L; Christin O; Comino C; Duvert D; Feret C; Harris CS; Lamy L; Luzy AP; Musicki B; Orfila D; Pascau J; Parnet V; Perrin A; Pierre R; Polge G; Raffin C; Rival Y; Taquet N; Thoreau E; Hennequin LF
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5802-5808. PubMed ID: 27815118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (Inverse) Agonists of Retinoic Acid-Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease.
    Jetten AM; Cook DN
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():371-390. PubMed ID: 31386594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of tertiary sulfonamides as RORc inverse agonists.
    Fauber BP; René O; Burton B; Everett C; Gobbi A; Hawkins J; Johnson AR; Liimatta M; Lockey P; Norman M; Wong H
    Bioorg Med Chem Lett; 2014 May; 24(9):2182-7. PubMed ID: 24685544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoid-related orphan receptor gamma t is a potential therapeutic target for controlling inflammatory autoimmunity.
    Huang Z; Xie H; Wang R; Sun Z
    Expert Opin Ther Targets; 2007 Jun; 11(6):737-43. PubMed ID: 17504012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.