These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 27542445)
21. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS. Hattori R; Yamada K; Shibata H; Hirano S; Tajima O; Yoshida N J Agric Food Chem; 2010 Jun; 58(12):7115-8. PubMed ID: 20504023 [TBL] [Abstract][Full Text] [Related]
22. Benchmarking laboratory-scale pomegranate vinegar against commercial wine vinegars: antioxidant activity and chemical composition. Kharchoufi S; Gomez J; Lasanta C; Castro R; Sainz F; Hamdi M J Sci Food Agric; 2018 Sep; 98(12):4749-4758. PubMed ID: 29542127 [TBL] [Abstract][Full Text] [Related]
23. Determination of the Free Amino Acid, Organic Acid, and Nucleotide in Commercial Vinegars. Kong Y; Zhang LL; Sun Y; Zhang YY; Sun BG; Chen HT J Food Sci; 2017 May; 82(5):1116-1123. PubMed ID: 28369909 [TBL] [Abstract][Full Text] [Related]
24. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging. Hsiao YS; Deng CX Ultrasound Med Biol; 2016 Feb; 42(2):503-17. PubMed ID: 26547634 [TBL] [Abstract][Full Text] [Related]
25. Classification of wine and alcohol vinegar samples based on near-infrared spectroscopy. Feasibility study on the detection of adulterated vinegar samples. Saiz-Abajo MJ; Gonzales-Saiz JM; Pizarro C J Agric Food Chem; 2004 Dec; 52(25):7711-9. PubMed ID: 15675824 [TBL] [Abstract][Full Text] [Related]
26. [Study on brand traceability of vinegar based on near infrared spectroscopy technology]. Guan X; Liu J; Gu FQ; Yang YJ Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2402-6. PubMed ID: 25532334 [TBL] [Abstract][Full Text] [Related]
27. Multi element (C, H, O) stable isotope analysis for the authentication of balsamic vinegars. Werner RA; Roßmann A Isotopes Environ Health Stud; 2015; 51(1):58-67. PubMed ID: 25704986 [TBL] [Abstract][Full Text] [Related]
28. Parallel thermal analysis technology using an infrared camera for high-throughput evaluation of active pharmaceutical ingredients: a case study of melting point determination. Kawakami K AAPS PharmSciTech; 2010 Sep; 11(3):1202-5. PubMed ID: 20676946 [TBL] [Abstract][Full Text] [Related]
29. Infrared cameras are potential traceable "fixed points" for future thermometry studies. Yap Kannan R; Keresztes K; Hussain S; Coats TJ; Bown MJ J Med Eng Technol; 2015; 39(8):485-9. PubMed ID: 26468981 [TBL] [Abstract][Full Text] [Related]
30. Stir bar sorptive extraction of volatile compounds in vinegar: validation study and comparison with solid phase microextraction. Guerrero ED; Marín RN; Mejías RC; Barroso CG J Chromatogr A; 2007 Oct; 1167(1):18-26. PubMed ID: 17804003 [TBL] [Abstract][Full Text] [Related]
31. Open source, low-cost device for thermometric titration with non-contact temperature measurement. Alessio KO; Tischer B; Voss M; Teixeira ID; Brendler BM; Duarte FA; Helfer GA; Costa AB; Barin JS Talanta; 2020 Aug; 216():120975. PubMed ID: 32456938 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of volatile aldehydes as discriminating parameters in quality vinegars with protected European geographical indication. Durán-Guerrero E; Chinnici F; Natali N; Riponi C J Sci Food Agric; 2015 Sep; 95(12):2395-403. PubMed ID: 25315151 [TBL] [Abstract][Full Text] [Related]
33. Classification of Sherry vinegars by combining multidimensional fluorescence, parafac and different classification approaches. Callejón RM; Amigo JM; Pairo E; Garmón S; Ocaña JA; Morales ML Talanta; 2012 Jan; 88():456-62. PubMed ID: 22265526 [TBL] [Abstract][Full Text] [Related]
34. Development of a non-titration potentiometric method for the determination of acidity in vinegar. Oliveira NS; Oliveira AF; Neves AA; Queiroz MELR Talanta; 2023 May; 256():124261. PubMed ID: 36641995 [TBL] [Abstract][Full Text] [Related]
35. Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics. Ríos-Reina R; Elcoroaristizabal S; Ocaña-González JA; García-González DL; Amigo JM; Callejón RM Food Chem; 2017 Sep; 230():108-116. PubMed ID: 28407890 [TBL] [Abstract][Full Text] [Related]
36. [Qualitative detection of bottled vinegar based on NIR spectroscopy technique]. Song HY; Qin G; Liu HQ Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1547-9. PubMed ID: 22870636 [TBL] [Abstract][Full Text] [Related]
37. Analytical method for authentication of Traditional Balsamic Vinegar of Modena. Consonni R; Cagliani LR; Rinaldini S; Incerti A Talanta; 2008 May; 75(3):765-9. PubMed ID: 18585144 [TBL] [Abstract][Full Text] [Related]
38. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques. Regmi U; Palma M; Barroso CG Anal Chim Acta; 2012 Jun; 732():137-44. PubMed ID: 22688045 [TBL] [Abstract][Full Text] [Related]
39. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
40. Analytical strategies for determination of cadmium in Brazilian vinegar samples using ET AAS. Junior MM; Silva LO; Leão DJ; Ferreira SL Food Chem; 2014 Oct; 160():209-13. PubMed ID: 24799229 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]