These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27542499)

  • 1. Reactivity of nitrogen atoms in adenine and (Ade)2Cu complexes towards ribose and 2-furanmethanol: Formation of adenosine and kinetin.
    Nashalian O; Yaylayan VA
    Food Chem; 2017 Jan; 215():463-9. PubMed ID: 27542499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar-Conjugated Bis(glycinato)copper(II) Complexes and Their Modulating Influence on the Maillard Reaction.
    Nashalian O; Yaylayan VA
    J Agric Food Chem; 2015 May; 63(17):4353-60. PubMed ID: 25891171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo synthesis of amino acids during the maillard reaction: qTOF/ESI mass spectrometric evidence for the mechanism of Akabori transformation.
    Nashalian O; Yaylayan VA
    J Agric Food Chem; 2015 Jan; 63(1):328-34. PubMed ID: 25514107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the Maillard reaction intermediates as divalent iron complexes in alanine/glucose/FeCl
    Kim ES; Yaylayan V
    Curr Res Food Sci; 2021; 4():287-294. PubMed ID: 33997795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of 2-acetylfuran formation between ribose and glucose in the Maillard reaction.
    Wang Y; Ho CT
    J Agric Food Chem; 2008 Dec; 56(24):11997-2001. PubMed ID: 19090713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia.
    Nashalian O; Yaylayan VA
    Food Chem; 2016 Apr; 197(Pt A):489-95. PubMed ID: 26616979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of aroma compounds from ribose and cysteine during the Maillard reaction.
    Cerny C; Davidek T
    J Agric Food Chem; 2003 Apr; 51(9):2714-21. PubMed ID: 12696962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of Complex Maillard Chemical Reactions, Resolved in Time.
    Hemmler D; Roullier-Gall C; Marshall JW; Rychlik M; Taylor AJ; Schmitt-Kopplin P
    Sci Rep; 2017 Jun; 7(1):3227. PubMed ID: 28607428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of 1,3-butadiene-induced DNA adducts in vivo and in vitro using liquid chromatography electrospray ionization tandem mass spectrometry.
    Tretyakova NYu ; Chiang SY; Walker VE; Swenberg JA
    J Mass Spectrom; 1998 Apr; 33(4):363-76. PubMed ID: 9597770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-dimensional oxalato-bridged Cu(II), Co(II), and Zn(II) complexes with purine and adenine as terminal ligands.
    García-Terán JP; Castillo O; Luque A; García-Couceiro U; Román P; Lloret F
    Inorg Chem; 2004 Sep; 43(18):5761-70. PubMed ID: 15332829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into Isomeric Diversity of Glycated Amino Acids in Maillard Reaction Mixtures.
    Xing H; Yaylayan V
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and structure determination of the adducts formed by electrochemical oxidation of 1,2,3,4-Tetrahydro-7,12-dimethylbenz[a]anthracene in the presence of deoxyribonucleosides or adenine.
    Mulder PP; Chen L; Sekhar BC; George M; Gross ML; Rogan EG; Cavalieri EL
    Chem Res Toxicol; 1996 Dec; 9(8):1264-77. PubMed ID: 8951228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bis(alaninato)iron(II) complexes as molecular scaffolds for the generation of N,N-di-glycated alanine derivatives in the presence of glucose.
    Sil Kim E; Yaylayan V
    Food Chem; 2022 Apr; 374():131815. PubMed ID: 34920402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of pyrolytic and aqueous-phase reactions on the mechanism of formation of Maillard products.
    Wnorowski A; Yaylayan VA
    J Agric Food Chem; 2000 Aug; 48(8):3549-54. PubMed ID: 10956148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt(III) complexes of monodentate N9-bound adeninate (ade-), [Co(ade-kappaN9)Cl(en)2]+ (en = 1,2-diaminoethane): syntheses, crystal structures, and protonation behaviors of the geometrical isomers.
    Suzuki T; Hirai Y; Monjushiro H; Kaizaki S
    Inorg Chem; 2004 Oct; 43(20):6435-44. PubMed ID: 15446895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of carnosine on volatile generation from Maillard reaction of ribose and cysteine.
    Chen Y; Ho CT
    J Agric Food Chem; 2002 Apr; 50(8):2372-6. PubMed ID: 11929299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the Chemistry of Non-Enzymatic Browning Reactions in Different Ribose-Amino Acid Model Systems.
    Hemmler D; Roullier-Gall C; Marshall JW; Rychlik M; Taylor AJ; Schmitt-Kopplin P
    Sci Rep; 2018 Nov; 8(1):16879. PubMed ID: 30442967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometric identification and characterization of antimony complexes with ribose-containing biomolecules and an RNA oligomer.
    Hansen HR; Pergantis SA
    Anal Bioanal Chem; 2006 Jul; 385(5):821-33. PubMed ID: 16791561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First prebiotic generation of a ribonucleotide from adenine, D-ribose and trimetaphosphate.
    Baccolini G; Boga C; Micheletti G
    Chem Commun (Camb); 2011 Mar; 47(12):3640-2. PubMed ID: 21305098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of free arginine and guanidine with glucose under thermal processing conditions and formation of Amadori-derived imidazolones.
    Zhu Y; Yaylayan VA
    Food Chem; 2017 Apr; 220():87-92. PubMed ID: 27855939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.