BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 27542723)

  • 1. Integration demands modulate effective connectivity in a fronto-temporal network for contextual sentence integration.
    Hartwigsen G; Henseler I; Stockert A; Wawrzyniak M; Wendt C; Klingbeil J; Baumgaertner A; Saur D
    Neuroimage; 2017 Feb; 147():812-824. PubMed ID: 27542723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-modulated activation and functional connectivity of the temporal and frontal areas during speech comprehension.
    Yue Q; Zhang L; Xu G; Shu H; Li P
    Neuroscience; 2013 May; 237():87-95. PubMed ID: 23357111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language.
    Willems RM; Ozyürek A; Hagoort P
    Neuroimage; 2009 Oct; 47(4):1992-2004. PubMed ID: 19497376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The connectivity signature of co-speech gesture integration: The superior temporal sulcus modulates connectivity between areas related to visual gesture and auditory speech processing.
    Straube B; Wroblewski A; Jansen A; He Y
    Neuroimage; 2018 Nov; 181():539-549. PubMed ID: 30025854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the IFG and pSTS in syntactic prediction: Evidence from a parametric study of hierarchical structure in fMRI.
    Matchin W; Hammerly C; Lau E
    Cortex; 2017 Mar; 88():106-123. PubMed ID: 28088041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions.
    Jackson RL; Hoffman P; Pobric G; Lambon Ralph MA
    J Neurosci; 2016 Feb; 36(5):1490-501. PubMed ID: 26843633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a selective left-hemispheric fronto-temporal network for processing syntactic complexity in language comprehension.
    Xiao Y; Friederici AD; Margulies DS; Brauer J
    Neuropsychologia; 2016 Mar; 83():274-282. PubMed ID: 26352468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke.
    Warren JE; Crinion JT; Lambon Ralph MA; Wise RJ
    Brain; 2009 Dec; 132(Pt 12):3428-42. PubMed ID: 19903736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength of Temporal White Matter Pathways Predicts Semantic Learning.
    Ripollés P; Biel D; Peñaloza C; Kaufmann J; Marco-Pallarés J; Noesselt T; Rodríguez-Fornells A
    J Neurosci; 2017 Nov; 37(46):11101-11113. PubMed ID: 29025925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes.
    Friederici AD; Rüschemeyer SA; Hahne A; Fiebach CJ
    Cereb Cortex; 2003 Feb; 13(2):170-7. PubMed ID: 12507948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preschoolers' brains rely on semantic cues prior to the mastery of syntax during sentence comprehension.
    Wu CY; Vissiennon K; Friederici AD; Brauer J
    Neuroimage; 2016 Feb; 126():256-66. PubMed ID: 26497266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cingulate control of fronto-temporal integration reflects linguistic demands: a three-way interaction in functional connectivity.
    Stamatakis EA; Marslen-Wilson WD; Tyler LK; Fletcher PC
    Neuroimage; 2005 Oct; 28(1):115-21. PubMed ID: 16023871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus.
    Hallam GP; Thompson HE; Hymers M; Millman RE; Rodd JM; Lambon Ralph MA; Smallwood J; Jefferies E
    Cortex; 2018 Feb; 99():150-165. PubMed ID: 29223933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking.
    Vartanian O; Beatty EL; Smith I; Blackler K; Lam Q; Forbes S
    Neuropsychologia; 2018 Sep; 118(Pt A):68-78. PubMed ID: 29477840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An fMRI study investigating effects of conceptually related sentences on the perception of degraded speech.
    Guediche S; Reilly M; Santiago C; Laurent P; Blumstein SE
    Cortex; 2016 Jun; 79():57-74. PubMed ID: 27100909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic functional network architecture of human semantic processing: Modules and hubs.
    Xu Y; Lin Q; Han Z; He Y; Bi Y
    Neuroimage; 2016 May; 132():542-555. PubMed ID: 26973170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Going beyond inferior prefrontal involvement in semantic control: evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex.
    Noonan KA; Jefferies E; Visser M; Lambon Ralph MA
    J Cogn Neurosci; 2013 Nov; 25(11):1824-50. PubMed ID: 23859646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-analytic connectivity modeling of the human superior temporal sulcus.
    Erickson LC; Rauschecker JP; Turkeltaub PE
    Brain Struct Funct; 2017 Jan; 222(1):267-285. PubMed ID: 27003288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial-temporal dynamics of gesture-speech integration: a simultaneous EEG-fMRI study.
    He Y; Steines M; Sommer J; Gebhardt H; Nagels A; Sammer G; Kircher T; Straube B
    Brain Struct Funct; 2018 Sep; 223(7):3073-3089. PubMed ID: 29737415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment of anterior and posterior structures in lexical-semantic processing: an fMRI study comparing implicit and explicit tasks.
    Ruff I; Blumstein SE; Myers EB; Hutchison E
    Brain Lang; 2008 Apr; 105(1):41-9. PubMed ID: 18279947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.