These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27542772)

  • 21. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks.
    Blatti C; Sinha S
    Bioinformatics; 2016 Jul; 32(14):2167-75. PubMed ID: 27153592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Network-based Phenome-Genome Association Prediction by Bi-Random Walk.
    Xie M; Xu Y; Zhang Y; Hwang T; Kuang R
    PLoS One; 2015; 10(5):e0125138. PubMed ID: 25933025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.
    Li Y; Patra JC
    Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstructing context-specific gene regulatory network and identifying modules and network rewiring through data integration.
    Ma T; Zhang A
    Methods; 2017 Jul; 124():36-45. PubMed ID: 28529066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.
    Correia C; Oliveira G; Vicente AM
    PLoS One; 2014; 9(11):e112399. PubMed ID: 25409314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PANDA: Prioritization of autism-genes using network-based deep-learning approach.
    Zhang Y; Chen Y; Hu T
    Genet Epidemiol; 2020 Jun; 44(4):382-394. PubMed ID: 32039500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GNN4DM: a graph neural network-based method to identify overlapping functional disease modules.
    Gézsi A; Antal P
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39321259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The discovery of integrated gene networks for autism and related disorders.
    Hormozdiari F; Penn O; Borenstein E; Eichler EE
    Genome Res; 2015 Jan; 25(1):142-54. PubMed ID: 25378250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.
    Wang YT; Sung PY; Lin PL; Yu YW; Chung RH
    BMC Genomics; 2015 May; 16(1):381. PubMed ID: 25975968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An approach to infer putative disease-specific mechanisms using neighboring gene networks.
    Ansari S; Donato M; Saberian N; Draghici S
    Bioinformatics; 2017 Jul; 33(13):1987-1994. PubMed ID: 28200075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An analytical method for the identification of cell type-specific disease gene modules.
    Guan J; Lin Y; Wang Y; Gao J; Ji G
    J Transl Med; 2021 Jan; 19(1):20. PubMed ID: 33407556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms.
    Park CY; Krishnan A; Zhu Q; Wong AK; Lee YS; Troyanskaya OG
    Bioinformatics; 2015 Apr; 31(7):1093-101. PubMed ID: 25431329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Searching the overlap between network modules with specific betweeness (S2B) and its application to cross-disease analysis.
    Garcia-Vaquero ML; Gama-Carvalho M; Rivas JL; Pinto FR
    Sci Rep; 2018 Aug; 8(1):11555. PubMed ID: 30068933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iDINGO-integrative differential network analysis in genomics with Shiny application.
    Class CA; Ha MJ; Baladandayuthapani V; Do KA
    Bioinformatics; 2018 Apr; 34(7):1243-1245. PubMed ID: 29194470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis.
    Cichonska A; Rousu J; Marttinen P; Kangas AJ; Soininen P; Lehtimäki T; Raitakari OT; Järvelin MR; Salomaa V; Ala-Korpela M; Ripatti S; Pirinen M
    Bioinformatics; 2016 Jul; 32(13):1981-9. PubMed ID: 27153689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Random walk with restart on multiplex and heterogeneous biological networks.
    Valdeolivas A; Tichit L; Navarro C; Perrin S; Odelin G; Levy N; Cau P; Remy E; Baudot A
    Bioinformatics; 2019 Feb; 35(3):497-505. PubMed ID: 30020411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.