BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 27542992)

  • 1. Substrate specificity determinants of class III nucleotidyl cyclases.
    Bharambe NG; Barathy DV; Syed W; Visweswariah SS; Colaςo M; Misquith S; Suguna K
    FEBS J; 2016 Oct; 283(20):3723-3738. PubMed ID: 27542992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes-implications for cyclase catalysis and evolution.
    Kleinboelting S; van den Heuvel J; Steegborn C
    FEBS J; 2014 Sep; 281(18):4151-64. PubMed ID: 25040695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis gives insight into substrate preferences of a nucleotidyl cyclase from Mycobacterium avium.
    Syed W; Colaςo M; Misquith S
    PLoS One; 2014; 9(10):e109358. PubMed ID: 25360748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation.
    Vercellino I; Rezabkova L; Olieric V; Polyhach Y; Weinert T; Kammerer RA; Jeschke G; Korkhov VM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9821-E9828. PubMed ID: 29087332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and degradation of cAMP in
    Saraullo V; Di Siervi N; Jerez B; Davio C; Zurita A
    Biochem J; 2017 Nov; 474(23):4001-4017. PubMed ID: 29054977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for GTP recognition by light-activated guanylate cyclase RhGC.
    Butryn A; Raza H; Rada H; Moraes I; Owens RJ; Orville AM
    FEBS J; 2020 Jul; 287(13):2797-2807. PubMed ID: 31808997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis.
    Liu Y; Ruoho AE; Rao VD; Hurley JH
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13414-9. PubMed ID: 9391039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the guanylyl cyclase Cya2.
    Rauch A; Leipelt M; Russwurm M; Steegborn C
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15720-5. PubMed ID: 18840690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases.
    Sinha SC; Sprang SR
    Rev Physiol Biochem Pharmacol; 2006; 157():105-40. PubMed ID: 17236651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases.
    Sunahara RK; Beuve A; Tesmer JJ; Sprang SR; Garbers DL; Gilman AG
    J Biol Chem; 1998 Jun; 273(26):16332-8. PubMed ID: 9632695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian Nucleotidyl Cyclases and Their Nucleotide Binding Sites.
    Dove S
    Handb Exp Pharmacol; 2017; 238():49-66. PubMed ID: 27900607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase.
    Tucker CL; Hurley JH; Miller TR; Hurley JB
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5993-7. PubMed ID: 9600905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A guanylyl cyclase from Paramecium with 22 transmembrane spans. Expression of the catalytic domains and formation of chimeras with the catalytic domains of mammalian adenylyl cyclases.
    Linder JU; Hoffmann T; Kurz U; Schultz JE
    J Biol Chem; 2000 Apr; 275(15):11235-40. PubMed ID: 10753932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate selection by class III adenylyl cyclases and guanylyl cyclases.
    Linder JU
    IUBMB Life; 2005 Dec; 57(12):797-803. PubMed ID: 16393782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CyaG, a novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclases.
    Kasahara M; Unno T; Yashiro K; Ohmori M
    J Biol Chem; 2001 Mar; 276(13):10564-9. PubMed ID: 11134014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain.
    Scheib U; Broser M; Constantin OM; Yang S; Gao S; Mukherjee S; Stehfest K; Nagel G; Gee CE; Hegemann P
    Nat Commun; 2018 May; 9(1):2046. PubMed ID: 29799525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoinhibitory mechanism and activity-related structural changes in a mycobacterial adenylyl cyclase.
    Barathy DV; Bharambe NG; Syed W; Zaveri A; Visweswariah SS; Colaςo M; Misquith S; Suguna K
    J Struct Biol; 2015 Jun; 190(3):304-13. PubMed ID: 25916753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications.
    Ryu MH; Moskvin OV; Siltberg-Liberles J; Gomelsky M
    J Biol Chem; 2010 Dec; 285(53):41501-8. PubMed ID: 21030591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of a guanylyl cyclase to an adenylyl cyclase.
    Beuve A
    Methods; 1999 Dec; 19(4):545-50. PubMed ID: 10581153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric regulation of nucleotidyl cyclases: an emerging pharmacological target.
    Seifert R; Beste KY
    Sci Signal; 2012 Sep; 5(240):pe37. PubMed ID: 22949734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.