BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27543017)

  • 1. Electrochemical sensing platform for tetrabromobisphenol A at pM level based on the synergetic enhancement effects of graphene and dioctadecyldimethylammonium bromide.
    Chen X; Wang Y; Tong J; Xia S; Zhou Y; Wu K
    Anal Chim Acta; 2016 Sep; 935():90-6. PubMed ID: 27543017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic enhancement of gold nanoparticles and 2-mercaptobenzothiazole as highly-sensitive sensing strategy for tetrabromobisphenol A.
    Chen X; Ji L; Zhou Y; Wu K
    Sci Rep; 2016 May; 6():26044. PubMed ID: 27185629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(sulfosalicylic acid)-functionalized gold nanoparticles for the detection of tetrabromobisphenol A at pM concentrations.
    Shen J; Bian C; Xia S; Wu K
    J Hazard Mater; 2020 Apr; 388():121733. PubMed ID: 31787398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile electrochemical determination of tetrabromobisphenol A based on modified glassy carbon electrode.
    Zhao Q; Zhang K; Yu G; Wu W; Wei X; Lu Q
    Talanta; 2016 May; 151():209-216. PubMed ID: 26946029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly imprinted electrochemical sensor based on a reduced graphene modified carbon electrode for tetrabromobisphenol A detection.
    Chen HJ; Zhang ZH; Cai R; Kong XQ; Chen X; Liu YN; Yao SZ
    Analyst; 2013 May; 138(9):2769-76. PubMed ID: 23476916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical functionalization of N-methyl-2-pyrrolidone-exfoliated graphene nanosheets as highly sensitive analytical platform for phenols.
    Wu C; Cheng Q; Wu K
    Anal Chem; 2015 Mar; 87(6):3294-9. PubMed ID: 25727929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Low Cost Fe
    Luo S; Yang M; Wu Y; Li J; Qin J; Feng F
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing.
    Wu C; Cheng Q; Wu K; Wu G; Li Q
    Anal Chim Acta; 2014 May; 825():26-33. PubMed ID: 24767147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical behavior of biocatalytical composite based on heme-proteins, didodecyldimethylammonium bromide and room-temperature ionic liquid.
    Xu Y; Hu C; Hu S
    Anal Chim Acta; 2010 Mar; 663(1):19-26. PubMed ID: 20172091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytic acid functionalized ZIF-67 decorated graphene nanosheets with remarkably boosted electrochemical sensing performance.
    Sun S; Tang Y; Wu C; Wan C
    Anal Chim Acta; 2020 Apr; 1107():55-62. PubMed ID: 32200902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ball-Mill-Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing.
    Li X; Shen J; Wu C; Wu K
    Small; 2019 Nov; 15(48):e1805567. PubMed ID: 30997735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zwitterionic Surfactant Modified Acetylene Black Paste Electrode for Highly Facile and Sensitive Determination of Tetrabromobisphenol A.
    Wei X; Zhao Q; Wu W; Zhou T; Jiang S; Tong Y; Lu Q
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy for Highly Sensitive Electrochemical Sensing: In Situ Coupling of a Metal-Organic Framework with Ball-Mill-Exfoliated Graphene.
    Li X; Li C; Wu C; Wu K
    Anal Chem; 2019 May; 91(9):6043-6050. PubMed ID: 30964654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxyhydroxide nanorods with high electrochemical reactivity as a sensitive and rapid determination platform for 4-chlorophenol.
    Zhang Y; Cheng Q; Zheng M; Liu X; Wu K
    J Hazard Mater; 2016 Apr; 307():36-42. PubMed ID: 26775105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-phase exfoliated graphene as highly-sensitive sensor for simultaneous determination of endocrine disruptors: diethylstilbestrol and estradiol.
    Hu L; Cheng Q; Chen D; Ma M; Wu K
    J Hazard Mater; 2015; 283():157-63. PubMed ID: 25265595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive extractive electrospray ionization tandem mass spectrometry for sensitive detection of tetrabromobisphenol A derivatives.
    Tian Y; Chen J; Ouyang YZ; Qu GB; Liu AF; Wang XM; Liu CX; Shi JB; Chen HW; Jiang GB
    Anal Chim Acta; 2014 Mar; 814():49-54. PubMed ID: 24528843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyvinylpyrrolidone-assisted solvent exfoliation of black phosphorus nanosheets and electrochemical sensing of p-nitrophenol.
    Shen J; Liu L; Huang W; Wu K
    Anal Chim Acta; 2021 Jul; 1167():338594. PubMed ID: 34049622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology-dependent sensing performance of CuO nanomaterials.
    Zhou Q; Zhang Y; Zeng T; Wan Q; Yang N
    Anal Chim Acta; 2021 Aug; 1171():338663. PubMed ID: 34112435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: layer-by-layer electrochemical preparation, characterization and rifampicin sensory application.
    Rastgar S; Shahrokhian S
    Talanta; 2014 Feb; 119():156-63. PubMed ID: 24401398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient degradation of tetrabromobisphenol A via electrochemical sequential reduction-oxidation: Degradation efficiency, intermediates, and pathway.
    Hou Y; Peng Z; Wang L; Yu Z; Huang L; Sun L; Huang J
    J Hazard Mater; 2018 Feb; 343():376-385. PubMed ID: 29017121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.