BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 27543263)

  • 1. A simulation study on matched case-control designs in the perspective of causal diagrams.
    Li H; Yuan Z; Su P; Wang T; Yu Y; Sun X; Xue F
    BMC Med Res Methodol; 2016 Aug; 16(1):102. PubMed ID: 27543263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can statistical adjustment guided by causal inference improve the accuracy of effect estimation? A simulation and empirical research based on meta-analyses of case-control studies.
    Yan R; Liu T; Peng Y; Peng X
    BMC Med Inform Decis Mak; 2020 Dec; 20(1):333. PubMed ID: 33308213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matched designs and causal diagrams.
    Mansournia MA; HernĂ¡n MA; Greenland S
    Int J Epidemiol; 2013 Jun; 42(3):860-9. PubMed ID: 23918854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can statistic adjustment of OR minimize the potential confounding bias for meta-analysis of case-control study? A secondary data analysis.
    Liu T; Nie X; Wu Z; Zhang Y; Feng G; Cai S; Lv Y; Peng X
    BMC Med Res Methodol; 2017 Dec; 17(1):179. PubMed ID: 29284414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of confounder in epidemiologic data contaminated by measurement error in covariates.
    Lee PH; Burstyn I
    BMC Med Res Methodol; 2016 May; 16():54. PubMed ID: 27193095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis for mistakenly adjusting for mediators in estimating total effect in observational studies.
    Wang T; Li H; Su P; Yu Y; Sun X; Liu Y; Yuan Z; Xue F
    BMJ Open; 2017 Nov; 7(11):e015640. PubMed ID: 29162569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the E-value in the presence of bias amplification: a simulation study.
    Barrette E; Higuera L; Wherry K
    BMC Med Res Methodol; 2024 Mar; 24(1):79. PubMed ID: 38539082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the use and misuse of scalar scores of confounders in design and analysis of observational studies.
    Pfeiffer RM; Riedl R
    Stat Med; 2015 Aug; 34(18):2618-35. PubMed ID: 25781579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using computable knowledge mined from the literature to elucidate confounders for EHR-based pharmacovigilance.
    Malec SA; Wei P; Bernstam EV; Boyce RD; Cohen T
    J Biomed Inform; 2021 May; 117():103719. PubMed ID: 33716168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confounding and regression adjustment in difference-in-differences studies.
    Zeldow B; Hatfield LA
    Health Serv Res; 2021 Oct; 56(5):932-941. PubMed ID: 33978956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Causal Diagrams for Biomedical Research.
    Kyriacou DN; Greenland P; Mansournia MA
    Ann Emerg Med; 2023 May; 81(5):606-613. PubMed ID: 36328854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of full model specification and backward elimination of potential confounders when estimating marginal and conditional causal effects on binary outcomes from observational data.
    Luijken K; Groenwold RHH; van Smeden M; Strohmaier S; Heinze G
    Biom J; 2024 Jan; 66(1):e2100237. PubMed ID: 35560110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confounder selection strategies targeting stable treatment effect estimators.
    Loh WW; Vansteelandt S
    Stat Med; 2021 Feb; 40(3):607-630. PubMed ID: 33150645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why match? Investigating matched case-control study designs with causal effect estimation.
    Rose S; Laan MJ
    Int J Biostat; 2009 Jan; 5(1):Article 1. PubMed ID: 20231866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of confounder selection.
    VanderWeele TJ
    Eur J Epidemiol; 2019 Mar; 34(3):211-219. PubMed ID: 30840181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of instrumental variable methods in cohort and nested case-control studies: a simulation study.
    Uddin MJ; Groenwold RH; de Boer A; Belitser SV; Roes KC; Hoes AW; Klungel OH
    Pharmacoepidemiol Drug Saf; 2014 Feb; 23(2):165-77. PubMed ID: 24306965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction to causal diagrams for confounder selection.
    Williamson EJ; Aitken Z; Lawrie J; Dharmage SC; Burgess JA; Forbes AB
    Respirology; 2014 Apr; 19(3):303-11. PubMed ID: 24447391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.