These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 27543294)
1. Sporadic Gene Loss After Duplication Is Associated with Functional Divergence of Sirtuin Deacetylases Among Candida Yeast Species. Rupert CB; Heltzel JM; Taylor DJ; Rusche LN G3 (Bethesda); 2016 Oct; 6(10):3297-3305. PubMed ID: 27543294 [TBL] [Abstract][Full Text] [Related]
2. The deacetylase Sir2 from the yeast Clavispora lusitaniae lacks the evolutionarily conserved capacity to generate subtelomeric heterochromatin. Froyd CA; Kapoor S; Dietrich F; Rusche LN PLoS Genet; 2013 Oct; 9(10):e1003935. PubMed ID: 24204326 [TBL] [Abstract][Full Text] [Related]
3. Genetic Analysis of Sirtuin Deacetylases in Hyphal Growth of Zhao G; Rusche LN mSphere; 2021 May; 6(3):. PubMed ID: 33952658 [No Abstract] [Full Text] [Related]
4. Genome-wide analysis of functional sirtuin chromatin targets in yeast. Li M; Valsakumar V; Poorey K; Bekiranov S; Smith JS Genome Biol; 2013 May; 14(5):R48. PubMed ID: 23710766 [TBL] [Abstract][Full Text] [Related]
5. Enforcement of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA repeats by Rif1. Salvi JS; Chan JN; Pettigrew C; Liu TT; Wu JD; Mekhail K Aging Cell; 2013 Feb; 12(1):67-75. PubMed ID: 23082874 [TBL] [Abstract][Full Text] [Related]
6. The duplicated deacetylases Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations. Froyd CA; Rusche LN Mol Cell Biol; 2011 Aug; 31(16):3351-65. PubMed ID: 21690292 [TBL] [Abstract][Full Text] [Related]
7. Substitution as a mechanism for genetic robustness: the duplicated deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae. Hickman MA; Rusche LN PLoS Genet; 2007 Aug; 3(8):e126. PubMed ID: 17676954 [TBL] [Abstract][Full Text] [Related]
8. HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae. Kang WK; Devare M; Kim JY J Microbiol; 2017 Feb; 55(2):123-129. PubMed ID: 28120189 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Imai S; Armstrong CM; Kaeberlein M; Guarente L Nature; 2000 Feb; 403(6771):795-800. PubMed ID: 10693811 [TBL] [Abstract][Full Text] [Related]
10. The Sir2-Sum1 complex represses transcription using both promoter-specific and long-range mechanisms to regulate cell identity and sexual cycle in the yeast Kluyveromyces lactis. Hickman MA; Rusche LN PLoS Genet; 2009 Nov; 5(11):e1000710. PubMed ID: 19893609 [TBL] [Abstract][Full Text] [Related]
11. The histone deacetylases Rpd3 and Hst1 antagonistically regulate de novo NAD Groth B; Huang CC; Lin SJ J Biol Chem; 2022 Oct; 298(10):102410. PubMed ID: 36007612 [TBL] [Abstract][Full Text] [Related]
12. Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. Weber JM; Irlbacher H; Ehrenhofer-Murray AE BMC Mol Biol; 2008 Nov; 9():100. PubMed ID: 18990212 [TBL] [Abstract][Full Text] [Related]
13. A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex. Sutton A; Heller RC; Landry J; Choy JS; Sirko A; Sternglanz R Mol Cell Biol; 2001 May; 21(10):3514-22. PubMed ID: 11313477 [TBL] [Abstract][Full Text] [Related]
14. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress. Simoneau A; Ricard É; Weber S; Hammond-Martel I; Wong LH; Sellam A; Giaever G; Nislow C; Raymond M; Wurtele H Nucleic Acids Res; 2016 Apr; 44(6):2706-26. PubMed ID: 26748095 [TBL] [Abstract][Full Text] [Related]
15. Sir2 regulates stability of repetitive domains differentially in the human fungal pathogen Candida albicans. Freire-Benéitez V; Gourlay S; Berman J; Buscaino A Nucleic Acids Res; 2016 Nov; 44(19):9166-9179. PubMed ID: 27369382 [TBL] [Abstract][Full Text] [Related]
16. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast. Hannan A; Abraham NM; Goyal S; Jamir I; Priyakumar UD; Mishra K Nucleic Acids Res; 2015 Dec; 43(21):10213-26. PubMed ID: 26319015 [TBL] [Abstract][Full Text] [Related]
17. Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Li M; Petteys BJ; McClure JM; Valsakumar V; Bekiranov S; Frank EL; Smith JS Mol Cell Biol; 2010 Jul; 30(13):3329-41. PubMed ID: 20439498 [TBL] [Abstract][Full Text] [Related]
18. Functional diversification accompanies gene family expansion of MED2 homologs in Candida albicans. Dunn MJ; Kinney GM; Washington PM; Berman J; Anderson MZ PLoS Genet; 2018 Apr; 14(4):e1007326. PubMed ID: 29630599 [TBL] [Abstract][Full Text] [Related]
19. SIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae. Chiani F; Di Felice F; Camilloni G Nucleic Acids Res; 2006; 34(19):5426-37. PubMed ID: 17012273 [TBL] [Abstract][Full Text] [Related]
20. Comment on "HST2 mediates SIR2-independent life-span extension by calorie restriction". Kaeberlein M; Steffen KK; Hu D; Dang N; Kerr EO; Tsuchiya M; Fields S; Kennedy BK Science; 2006 Jun; 312(5778):1312; author reply 1312. PubMed ID: 16741098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]