BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27543438)

  • 1. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5' splice site.
    Yadegari H; Biswas A; Akhter MS; Driesen J; Ivaskevicius V; Marquardt N; Oldenburg J
    Blood; 2016 Oct; 128(17):2144-2152. PubMed ID: 27543438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of aberrant splicing of von Willebrand factor in von Willebrand disease: an underrecognized mechanism.
    Hawke L; Bowman ML; Poon MC; Scully MF; Rivard GE; James PD
    Blood; 2016 Jul; 128(4):584-93. PubMed ID: 27317792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep Exon Cryptic Splice Site Promotes Aberrant Intron Retention in a Von Willebrand Disease Patient.
    Conboy JG
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput analysis revealed mutations' diverging effects on
    Souček P; Réblová K; Kramárek M; Radová L; Grymová T; Hujová P; Kováčová T; Lexa M; Grodecká L; Freiberger T
    RNA Biol; 2019 Oct; 16(10):1364-1376. PubMed ID: 31213135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined partial exon skipping and cryptic splice site activation as a new molecular mechanism for recessive type 1 von Willebrand disease.
    Gallinaro L; Sartorello F; Pontara E; Cattini MG; Bertomoro A; Bartoloni L; Pagnan A; Casonato A
    Thromb Haemost; 2006 Dec; 96(6):711-6. PubMed ID: 17139363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Severe, recessive type 1 is a discrete form of von Willebrand disease: the lesson learned from the c.1534-3C>A von Willebrand factor mutation.
    Casonato A; Cattini MG; Barbon G; Daidone V; Pontara E
    Thromb Res; 2015 Sep; 136(3):682-6. PubMed ID: 26251079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the effect of silent, intronic and missense mutations on
    Borràs N; Orriols G; Batlle J; Pérez-Rodríguez A; Fidalgo T; Martinho P; López-Fernández MF; Rodríguez-Trillo Á; Lourés E; Parra R; Altisent C; Cid AR; Bonanad S; Cabrera N; Moret A; Mingot-Castellano ME; Navarro N; Pérez-Montes R; Marcellin S; Moreto A; Herrero S; Soto I; Fernández-Mosteirín N; Jiménez-Yuste V; Alonso N; de Andrés-Jacob A; Fontanes E; Campos R; Paloma MJ; Bermejo N; Berrueco R; Mateo J; Arribalzaga K; Marco P; Palomo Á; Quismondo NC; Iñigo B; Nieto MDM; Vidal R; Martínez MP; Aguinaco R; Tenorio JM; Ferreiro M; García-Frade J; Rodríguez-Huerta AM; Cuesta J; Rodríguez-González R; García-Candel F; Dobón M; Aguilar C; Vidal F; Corrales I
    Haematologica; 2019 Mar; 104(3):587-598. PubMed ID: 30361419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A synonymous (c.3390C>T) or a splice-site (c.3380-2A>G) mutation causes exon 26 skipping in four patients with von Willebrand disease (2A/IIE).
    Pagliari MT; Baronciani L; Garcìa Oya I; Solimando M; La Marca S; Cozzi G; Stufano F; Canciani MT; Peyvandi F
    J Thromb Haemost; 2013 Jul; 11(7):1251-9. PubMed ID: 23621778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression.
    Exline CM; Feng Z; Stoltzfus CM
    J Virol; 2008 Apr; 82(8):3921-31. PubMed ID: 18272582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption.
    Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L
    Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center.
    Siatecka M; Reyes JL; Konarska MM
    Genes Dev; 1999 Aug; 13(15):1983-93. PubMed ID: 10444596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of a strong F9 cryptic 5'ss by intrinsic elements and by combination of tailored U1snRNAs with antisense oligonucleotides.
    Balestra D; Barbon E; Scalet D; Cavallari N; Perrone D; Zanibellato S; Bernardi F; Pinotti M
    Hum Mol Genet; 2015 Sep; 24(17):4809-16. PubMed ID: 26063760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles and correction of 5'-splice site selection.
    Malard F; Mackereth CD; Campagne S
    RNA Biol; 2022 Jan; 19(1):943-960. PubMed ID: 35866748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pick one, but be quick: 5' splice sites and the problems of too many choices.
    Roca X; Krainer AR; Eperon IC
    Genes Dev; 2013 Jan; 27(2):129-44. PubMed ID: 23348838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A noncanonical splicing variant c.875-5 T > G in von Willebrand factor causes in-frame exon skipping and type 2A von Willebrand disease.
    Liang Q; Zhang Z; Ding B; Shao Y; Ding Q; Dai J; Hu X; Wu W; Wang X
    Thromb Res; 2024 Apr; 236():51-60. PubMed ID: 38387303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic differences between authentic and cryptic 5' splice sites.
    Roca X; Sachidanandam R; Krainer AR
    Nucleic Acids Res; 2003 Nov; 31(21):6321-33. PubMed ID: 14576320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant 5' splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization.
    Buratti E; Chivers M; Královicová J; Romano M; Baralle M; Krainer AR; Vorechovsky I
    Nucleic Acids Res; 2007; 35(13):4250-63. PubMed ID: 17576681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of the inherent strength of human 5' splice sites.
    Roca X; Sachidanandam R; Krainer AR
    RNA; 2005 May; 11(5):683-98. PubMed ID: 15840817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to Design U1 snRNA Molecules for Splicing Rescue.
    Matos L; Santos JI; Coutinho MF; Alves S
    Methods Mol Biol; 2022; 2434():89-102. PubMed ID: 35213011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene.
    Singh NN; Del Rio-Malewski JB; Luo D; Ottesen EW; Howell MD; Singh RN
    Nucleic Acids Res; 2017 Dec; 45(21):12214-12240. PubMed ID: 28981879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.