These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27543749)
1. Linking carbon stock change from land-use change to consumption of agricultural products: Alternative perspectives. Goh CS; Wicke B; Faaij A; Bird DN; Schwaiger H; Junginger M J Environ Manage; 2016 Nov; 182():542-556. PubMed ID: 27543749 [TBL] [Abstract][Full Text] [Related]
2. Linking carbon stock change from land-use change to consumption of agricultural products: A review with Indonesian palm oil as a case study. Goh CS; Wicke B; Verstegen J; Faaij A; Junginger M J Environ Manage; 2016 Dec; 184(Pt 2):340-352. PubMed ID: 27733298 [TBL] [Abstract][Full Text] [Related]
3. A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities - applications to Brazilian beef and soy, Indonesian palm oil. Persson UM; Henders S; Cederberg C Glob Chang Biol; 2014 Nov; 20(11):3482-91. PubMed ID: 24838193 [TBL] [Abstract][Full Text] [Related]
4. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands. Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474 [TBL] [Abstract][Full Text] [Related]
5. Low-carbon agriculture in South America to mitigate global climate change and advance food security. Sá JC; Lal R; Cerri CC; Lorenz K; Hungria M; de Faccio Carvalho PC Environ Int; 2017 Jan; 98():102-112. PubMed ID: 27838119 [TBL] [Abstract][Full Text] [Related]
6. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets. Schneider JM; Zabel F; Schünemann F; Delzeit R; Mauser W PLoS One; 2022; 17(2):e0263063. PubMed ID: 35192630 [TBL] [Abstract][Full Text] [Related]
7. Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Reilly J; Melillo J; Cai Y; Kicklighter D; Gurgel A; Paltsev S; Cronin T; Sokolov A; Schlosser A Environ Sci Technol; 2012 Jun; 46(11):5672-9. PubMed ID: 22533690 [TBL] [Abstract][Full Text] [Related]
8. Deforestation and greenhouse gas emissions could arise when replacing palm oil with other vegetable oils. Chiriacò MV; Galli N; Santini M; Rulli MC Sci Total Environ; 2024 Mar; 914():169486. PubMed ID: 38145678 [TBL] [Abstract][Full Text] [Related]
9. Greenhouse gas emissions during plantation stage of palm oil-based biofuel production addressing different land conversion scenarios in Malaysia. Kusin FM; Akhir NIM; Mohamat-Yusuff F; Awang M Environ Sci Pollut Res Int; 2017 Feb; 24(6):5293-5304. PubMed ID: 28004372 [TBL] [Abstract][Full Text] [Related]
10. Assessing the efficiency of changes in land use for mitigating climate change. Searchinger TD; Wirsenius S; Beringer T; Dumas P Nature; 2018 Dec; 564(7735):249-253. PubMed ID: 30542169 [TBL] [Abstract][Full Text] [Related]
11. Carbon Storage and Land-Use Strategies in Agricultural Landscapes across Three Continents. Williams DR; Phalan B; Feniuk C; Green RE; Balmford A Curr Biol; 2018 Aug; 28(15):2500-2505.e4. PubMed ID: 30057311 [TBL] [Abstract][Full Text] [Related]
12. Land-use change in oil palm dominated tropical landscapes-An agent-based model to explore ecological and socio-economic trade-offs. Dislich C; Hettig E; Salecker J; Heinonen J; Lay J; Meyer KM; Wiegand K; Tarigan S PLoS One; 2018; 13(1):e0190506. PubMed ID: 29351290 [TBL] [Abstract][Full Text] [Related]
13. Long-term terrestrial carbon dynamics in the Midwestern United States during 1850-2015: Roles of land use and cover change and agricultural management. Yu Z; Lu C; Cao P; Tian H Glob Chang Biol; 2018 Jun; 24(6):2673-2690. PubMed ID: 29385301 [TBL] [Abstract][Full Text] [Related]
14. Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Danielsen F; Beukema H; Burgess ND; Parish F; Brühl CA; Donald PF; Murdiyarso D; Phalan B; Reijnders L; Struebig M; Fitzherbert EB Conserv Biol; 2009 Apr; 23(2):348-58. PubMed ID: 19040648 [TBL] [Abstract][Full Text] [Related]
15. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation? Humpenöder F; Popp A; Stevanovic M; Müller C; Bodirsky BL; Bonsch M; Dietrich JP; Lotze-Campen H; Weindl I; Biewald A; Rolinski S Environ Sci Technol; 2015 Jun; 49(11):6731-9. PubMed ID: 25939014 [TBL] [Abstract][Full Text] [Related]
16. Soil carbon sequestration or biofuel production: new land-use opportunities for mitigating climate over abandoned Soviet farmlands. Vuichard N; Ciais P; Wolf A Environ Sci Technol; 2009 Nov; 43(22):8678-83. PubMed ID: 20028070 [TBL] [Abstract][Full Text] [Related]
17. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Kantola IB; Masters MD; Beerling DJ; Long SP; DeLucia EH Biol Lett; 2017 Apr; 13(4):. PubMed ID: 28381630 [TBL] [Abstract][Full Text] [Related]
18. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Lugato E; Panagos P; Bampa F; Jones A; Montanarella L Glob Chang Biol; 2014 Jan; 20(1):313-26. PubMed ID: 23765562 [TBL] [Abstract][Full Text] [Related]
19. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia. Austin KG; Kasibhatla PS; Urban DL; Stolle F; Vincent J PLoS One; 2015; 10(5):e0127963. PubMed ID: 26011182 [TBL] [Abstract][Full Text] [Related]
20. Estimating 20-year land-use change and derived CO Novaes RML; Pazianotto RAA; Brandão M; Alves BJR; May A; Folegatti-Matsuura MIS Glob Chang Biol; 2017 Sep; 23(9):3716-3728. PubMed ID: 28370797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]