These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27543852)

  • 1. Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants.
    Lukina AO; Boutin C; Rowland O; Carpenter DJ
    Chemosphere; 2016 Nov; 162():355-64. PubMed ID: 27543852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seed germination, root elongation, root-tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo-aquic soil.
    Hou J; Liu GN; Xue W; Fu WJ; Liang BC; Liu XH
    Environ Toxicol Chem; 2014 Mar; 33(3):671-6. PubMed ID: 24318542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of combined pollution of chromium and benzo(a)pyrene on seed growth of Lolium perenne.
    Chigbo C; Batty L
    Chemosphere; 2013 Jan; 90(2):164-9. PubMed ID: 22795067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants.
    López-Luna J; González-Chávez MC; Esparza-García FJ; Rodríguez-Vázquez R
    J Hazard Mater; 2009 Apr; 163(2-3):829-34. PubMed ID: 18814962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.
    Thomas PJ; Carpenter D; Boutin C; Allison JE
    Chemosphere; 2014 Feb; 96():57-66. PubMed ID: 23978671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecotoxicological tests assessment of soils polluted by chromium (VI) or pentachlorophenol.
    Martí E; Sierra J; Sánchez M; Cruañas R; Garau MA
    Sci Total Environ; 2007 May; 378(1-2):53-7. PubMed ID: 17379274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of plant-associated bacteria biosensors on plant growth in the presence of hexavalent chromium.
    Francisco R; Branco R; Schwab S; Baldani JI; Morais PV
    World J Microbiol Biotechnol; 2017 Dec; 34(1):12. PubMed ID: 29256050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ecotoxicological effect and soil environmental criteria of the heavy metal chromium(VI)].
    Wang XN; Liu ZT; Wang WH; Zhang C; Chen LH
    Huan Jing Ke Xue; 2014 Aug; 35(8):3155-61. PubMed ID: 25338393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y; Fang Z; Kang Y; Tsang EP
    J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and transcriptional responses of Lycopersicon esculentum to hexavalent chromium in agricultural soil.
    Li SG; Hou J; Liu XH; Cui BS; Bai JH
    Environ Toxicol Chem; 2016 Jul; 35(7):1751-8. PubMed ID: 26627465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of an industrial effluent on plant colonization and on the germination and post-germinative growth of seeds of terrestrial and aquatic plant species.
    Crowe AU; Plant AL; Kermode AR
    Environ Pollut; 2002; 117(1):179-89. PubMed ID: 11843534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).
    Bamgbose I; Anderson TA
    Ecotoxicol Environ Saf; 2015 Dec; 122():268-74. PubMed ID: 26283287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A review on the environmental behaviors and toxicity assessment of chromium in soil-plant systems].
    Dai Y; Yang ZF; Zheng YM
    Huan Jing Ke Xue; 2009 Nov; 30(11):3432-40. PubMed ID: 20063767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil.
    El-Temsah YS; Joner EJ
    Environ Toxicol; 2012 Jan; 27(1):42-9. PubMed ID: 20549639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene.
    Sharonova N; Breus I
    Sci Total Environ; 2012 May; 424():121-9. PubMed ID: 22444070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germination requirements for 29 terrestrial and wetland wild plant species appropriate for phytotoxicity testing.
    White AL; Boutin C; Dalton RL; Henkelman B; Carpenter D
    Pest Manag Sci; 2009 Jan; 65(1):19-26. PubMed ID: 18785223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of diesel fuel on seed germination.
    Adam G; Duncan H
    Environ Pollut; 2002; 120(2):363-70. PubMed ID: 12395850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments.
    Bai J; Huang L; Gao Z; Lu Q; Wang J; Zhao Q
    J Hazard Mater; 2014 Sep; 280():295-303. PubMed ID: 25173982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis.
    Calheiros CS; Rangel AO; Castro PM
    Arch Environ Contam Toxicol; 2008 Oct; 55(3):404-14. PubMed ID: 18214580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of wild plant species to polycyclic aromatic hydrocarbons in soil.
    Hong SH; Kang BH; Kang MH; Chung JW; Jun WJ; Chung JI; Kim MC; Shim SI
    J Environ Monit; 2009 Sep; 11(9):1664-72. PubMed ID: 19724837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.