These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Serine protease inhibitor Kazal type 1 and epidermal growth factor receptor are expressed in pancreatic tubular adenocarcinoma, intraductal papillary mucinous neoplasm, and pancreatic intraepithelial neoplasia. Ozaki N; Ohmuraya M; Ida S; Hashimoto D; Ikuta Y; Chikamoto A; Hirota M; Baba H J Hepatobiliary Pancreat Sci; 2013 Aug; 20(6):620-7. PubMed ID: 23475261 [TBL] [Abstract][Full Text] [Related]
4. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. von Figura G; Fukuda A; Roy N; Liku ME; Morris Iv JP; Kim GE; Russ HA; Firpo MA; Mulvihill SJ; Dawson DW; Ferrer J; Mueller WF; Busch A; Hertel KJ; Hebrok M Nat Cell Biol; 2014 Mar; 16(3):255-67. PubMed ID: 24561622 [TBL] [Abstract][Full Text] [Related]
5. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS. Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346 [TBL] [Abstract][Full Text] [Related]
6. Differential ezrin and phosphorylated ezrin expression profiles between pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm, and invasive ductal carcinoma of the pancreas. Oda Y; Aishima S; Morimatsu K; Hayashi A; Shindo K; Fujino M; Mizuuchi Y; Hattori M; Tanaka M; Oda Y Hum Pathol; 2013 Aug; 44(8):1487-98. PubMed ID: 23465281 [TBL] [Abstract][Full Text] [Related]
7. Disease spectrum of intraductal papillary mucinous neoplasm with an associated invasive carcinoma invasive IPMN versus pancreatic ductal adenocarcinoma-associated IPMN. Kang MJ; Lee KB; Jang JY; Kwon W; Park JW; Chang YR; Kim SW Pancreas; 2013 Nov; 42(8):1267-74. PubMed ID: 24308063 [TBL] [Abstract][Full Text] [Related]
8. Different patterns of p16INK4A and p53 protein expressions in intraductal papillary-mucinous neoplasms and pancreatic intraepithelial neoplasia. Abe K; Suda K; Arakawa A; Yamasaki S; Sonoue H; Mitani K; Nobukawa B Pancreas; 2007 Jan; 34(1):85-91. PubMed ID: 17198188 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of SOX9 expression in pancreatic ductal adenocarcinoma and intraductal papillary mucinous neoplasm. Tanaka T; Kuroki T; Adachi T; Ono S; Hirabaru M; Soyama A; Kitasato A; Takatsuki M; Hayashi T; Eguchi S Pancreas; 2013 Apr; 42(3):488-93. PubMed ID: 23146920 [TBL] [Abstract][Full Text] [Related]
10. Survivin expression in pancreatic intraepithelial neoplasia (PanIN): steady increase along the developmental stages of pancreatic ductal adenocarcinoma. Bhanot U; Heydrich R; Möller P; Hasel C Am J Surg Pathol; 2006 Jun; 30(6):754-9. PubMed ID: 16723855 [TBL] [Abstract][Full Text] [Related]
11. Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Prasad NB; Biankin AV; Fukushima N; Maitra A; Dhara S; Elkahloun AG; Hruban RH; Goggins M; Leach SD Cancer Res; 2005 Mar; 65(5):1619-26. PubMed ID: 15753353 [TBL] [Abstract][Full Text] [Related]
12. The BRG1/SOX9 axis is critical for acinar cell-derived pancreatic tumorigenesis. Tsuda M; Fukuda A; Roy N; Hiramatsu Y; Leonhardt L; Kakiuchi N; Hoyer K; Ogawa S; Goto N; Ikuta K; Kimura Y; Matsumoto Y; Takada Y; Yoshioka T; Maruno T; Yamaga Y; Kim GE; Akiyama H; Ogawa S; Wright CV; Saur D; Takaori K; Uemoto S; Hebrok M; Chiba T; Seno H J Clin Invest; 2018 Aug; 128(8):3475-3489. PubMed ID: 30010625 [TBL] [Abstract][Full Text] [Related]
13. Expression of Sonic hedgehog signaling pathway correlates with the tumorigenesis of intraductal papillary mucinous neoplasm of the pancreas. Satoh K; Kanno A; Hamada S; Hirota M; Umino J; Masamune A; Egawa S; Motoi F; Unno M; Shimosegawa T Oncol Rep; 2008 May; 19(5):1185-90. PubMed ID: 18425375 [TBL] [Abstract][Full Text] [Related]
14. Expression of K homology domain containing protein (KOC) in pancreatic cytology with corresponding histology. Toll AD; Witkiewicz AK; Bibbo M Acta Cytol; 2009; 53(2):123-9. PubMed ID: 19365962 [TBL] [Abstract][Full Text] [Related]
15. [Intraepithelial neoplasms (PanIN) and intraductal papillary-mucinous neoplasms (IPMN) of the pancreas as precursor lesions of pancreatic carcinoma]. Ott C; Heinmöller E; Gaumann A; Schölmerich J; Klebl F Med Klin (Munich); 2007 Feb; 102(2):127-35. PubMed ID: 17323019 [TBL] [Abstract][Full Text] [Related]
16. Intraductal papillary mucinous neoplasm of the pancreas rapidly xenografts in chicken eggs and predicts aggressiveness. Zhao Z; Bauer N; Aleksandrowicz E; Yin L; Gladkich J; Gross W; Kaiser J; Hackert T; Strobel O; Herr I Int J Cancer; 2018 Apr; 142(7):1440-1452. PubMed ID: 29143337 [TBL] [Abstract][Full Text] [Related]
17. GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin. Inaguma S; Kasai K; Ikeda H Oncogene; 2011 Feb; 30(6):714-23. PubMed ID: 20972463 [TBL] [Abstract][Full Text] [Related]
18. hsa-miR-96 and hsa-miR-217 Expression Down-Regulates with Increasing Dysplasia in Pancreatic Intraepithelial Neoplasias and Intraductal Papillary Mucinous Neoplasms. Chang X; Yu C; Li J; Yu S; Chen J Int J Med Sci; 2017; 14(5):412-418. PubMed ID: 28539816 [No Abstract] [Full Text] [Related]
19. Review of the cytologic features of noninvasive ductal carcinomas of the pancreas: differences from invasive ductal carcinoma. Hara H; Suda K Am J Clin Pathol; 2008 Jan; 129(1):115-29. PubMed ID: 18089497 [TBL] [Abstract][Full Text] [Related]