These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27543893)

  • 1. Identification of safety-critical events using kinematic vehicle data and the discrete fourier transform.
    Kluger R; Smith BL; Park H; Dailey DJ
    Accid Anal Prev; 2016 Nov; 96():162-168. PubMed ID: 27543893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?
    Dozza M; González NP
    Accid Anal Prev; 2013 Nov; 60():298-304. PubMed ID: 23489911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of basic kinematic thresholds in the identification of crash and near-crash events within naturalistic driving data.
    Perez MA; Sudweeks JD; Sears E; Antin J; Lee S; Hankey JM; Dingus TA
    Accid Anal Prev; 2017 Jun; 103():10-19. PubMed ID: 28371637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in frequency of occurrence, event characteristics, and pre-impact vehicle kinematics between crashes, near-crashes, and single vehicle conflicts in a large-scale naturalistic driving study.
    Perez MA; Sudweeks JD; Sears E; Valente J; Guo F
    Traffic Inj Prev; 2023; 24(1):32-37. PubMed ID: 36548218
    [No Abstract]   [Full Text] [Related]  

  • 5. Exploring microscopic driving volatility in naturalistic driving environment prior to involvement in safety critical events-Concept of event-based driving volatility.
    Wali B; Khattak AJ; Karnowski T
    Accid Anal Prev; 2019 Nov; 132():105277. PubMed ID: 31514087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.
    Jeong E; Oh C; Lee S
    Accid Anal Prev; 2017 Jul; 104():115-124. PubMed ID: 28499140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.
    Scanlon JM; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S182-9. PubMed ID: 26436230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data.
    Feng F; Bao S; Sayer JR; Flannagan C; Manser M; Wunderlich R
    Accid Anal Prev; 2017 Jul; 104():125-136. PubMed ID: 28499141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
    Chen R; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S176-81. PubMed ID: 26436229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass half-full: On-road glance metrics differentiate crashes from near-crashes in the 100-Car data.
    Seppelt BD; Seaman S; Lee J; Angell LS; Mehler B; Reimer B
    Accid Anal Prev; 2017 Oct; 107():48-62. PubMed ID: 28787612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using naturalistic driving data to explore the association between traffic safety-related events and crash risk at driver level.
    Wu KF; Aguero-Valverde J; Jovanis PP
    Accid Anal Prev; 2014 Nov; 72():210-8. PubMed ID: 25086439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of the Naturalistic Engagement in Secondary Tasks (NEST) distracted driving dataset.
    Owens JM; Angell L; Hankey JM; Foley J; Ebe K
    J Safety Res; 2015 Sep; 54():33-6. PubMed ID: 26403898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining and screening crash surrogate events using naturalistic driving data.
    Wu KF; Jovanis PP
    Accid Anal Prev; 2013 Dec; 61():10-22. PubMed ID: 23177902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting crash-relevant violations at stop sign-controlled intersections for the development of an intersection driver assistance system.
    Scanlon JM; Sherony R; Gabler HC
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():59-65. PubMed ID: 27586104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal safety evaluation of connected vehicles' platooning on expressways.
    Rahman MS; Abdel-Aty M
    Accid Anal Prev; 2018 Aug; 117():381-391. PubMed ID: 29275900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal validation of near-crashes in naturalistic driving studies: a continuous and multivariate approach.
    Jonasson JK; Rootzén H
    Accid Anal Prev; 2014 Jan; 62():102-9. PubMed ID: 24144495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a method for detecting jerks in safety critical events.
    Bagdadi O; Várhelyi A
    Accid Anal Prev; 2013 Jan; 50():83-91. PubMed ID: 23200443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding manoeuvre motifs in vehicle telematics.
    Silva MI; Henriques R
    Accid Anal Prev; 2020 Apr; 138():105467. PubMed ID: 32062161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing safety critical driving patterns of heavy passenger vehicle drivers using instrumented vehicle data - An unsupervised approach.
    Yarlagadda J; Jain P; Pawar DS
    Accid Anal Prev; 2021 Dec; 163():106464. PubMed ID: 34735888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.