BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27544426)

  • 1. Molecular basis of the recognition of FMN by a HAD phosphatase TON_0338.
    Niu RJ; Zheng QC; Zhang HX
    J Mol Graph Model; 2016 Sep; 69():17-25. PubMed ID: 27544426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the substrate selectivity of a HAD phosphatase from Thermococcus onnurineus NA1.
    Ngo TD; Van Le B; Subramani VK; Thi Nguyen CM; Lee HS; Cho Y; Kim KK; Hwang HY
    Biochem Biophys Res Commun; 2015 May; 461(1):122-7. PubMed ID: 25858319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study.
    Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H
    J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of in silico mutations in the auto-inhibitory loop of human endothelial nitric oxide synthase FMN sub-domain.
    Preethi D; Anishetty S; Gautam P
    J Mol Model; 2021 Feb; 27(2):63. PubMed ID: 33527205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the interactions of flavin mononucleotide (FMN) and riboflavin with FMN riboswitch: a molecular dynamics simulation study.
    Wakchaure PD; Jana K; Ganguly B
    J Biomol Struct Dyn; 2020 Aug; 38(13):3856-3866. PubMed ID: 31498025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials.
    Lostao A; Gómez-Moreno C; Mayhew SG; Sancho J
    Biochemistry; 1997 Nov; 36(47):14334-44. PubMed ID: 9398151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi.
    Borshchevskiy V; Round E; Bertsova Y; Polovinkin V; Gushchin I; Ishchenko A; Kovalev K; Mishin A; Kachalova G; Popov A; Bogachev A; Gordeliy V
    PLoS One; 2015; 10(3):e0118548. PubMed ID: 25734798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the synthesis of FMN in prokaryotic organisms.
    Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of flavin mononucleotide in the thermostability and oligomerization of Escherichia coli stress-defense protein WrbA.
    Natalello A; Doglia SM; Carey J; Grandori R
    Biochemistry; 2007 Jan; 46(2):543-53. PubMed ID: 17209564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impeded electron transfer from a pathogenic FMN domain mutant of methionine synthase reductase and its responsiveness to flavin supplementation.
    Gherasim CG; Zaman U; Raza A; Banerjee R
    Biochemistry; 2008 Nov; 47(47):12515-22. PubMed ID: 18980384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex.
    Schneider C; Sühnel J
    Biopolymers; 1999 Sep; 50(3):287-302. PubMed ID: 10397790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bovine kidney low molecular weight acid phosphatase: FMN-dependent kinetics.
    Granjeiro JM; Ferreira CV; Jucá MB; Taga EM; Aoyama H
    Biochem Mol Biol Int; 1997 May; 41(6):1201-8. PubMed ID: 9161715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization and preliminary X-ray crystallographic analysis of a novel histidinol-phosphate phosphatase from Thermococcus onnurineus NA1.
    Jung HI; Lee HS; An YJ; Cho Y; Lee JH; Kang SG; Cha SS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 May; 65(Pt 5):472-4. PubMed ID: 19407379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants.
    O'Farrell PA; Walsh MA; McCarthy AA; Higgins TM; Voordouw G; Mayhew SG
    Biochemistry; 1998 Jun; 37(23):8405-16. PubMed ID: 9622492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a Highly Conserved Hypothetical Protein TON_0340 as a Probable Manganese-Dependent Phosphatase.
    Sohn YS; Lee SG; Lee KH; Ku B; Shin HC; Cha SS; Kim YG; Lee HS; Kang SG; Oh BH
    PLoS One; 2016; 11(12):e0167549. PubMed ID: 27907125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of UbiX, an aromatic acid decarboxylase from the psychrophilic bacterium Colwellia psychrerythraea that undergoes FMN-induced conformational changes.
    Do H; Kim SJ; Lee CW; Kim HW; Park HH; Kim HM; Park H; Park H; Lee JH
    Sci Rep; 2015 Feb; 5():8196. PubMed ID: 25645665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants for FMN-binding in Desulfovibrio gigas flavoredoxin.
    Broco M; Soares CM; Oliveira S; Mayhew SG; Rodrigues-Pousada C
    FEBS Lett; 2007 Sep; 581(23):4397-402. PubMed ID: 17719581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization and preliminary X-ray studies of TON_1713 from Thermococcus onnurineus NA1, a putative member of the haloacid dehalogenase superfamily.
    Le BV; Lee HS; Cho Y; Kang SG; Kim DY; Kim YG; Kim KK
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Dec; 63(Pt 12):1048-50. PubMed ID: 18084090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.