These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 27544520)
1. Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates. Mohammadi S; Busa LS; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M Anal Bioanal Chem; 2016 Nov; 408(27):7559-7563. PubMed ID: 27544520 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars. Kasama T; Kaji N; Tokeshi M; Baba Y Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286 [TBL] [Abstract][Full Text] [Related]
3. C-reactive protein and interleukin 6 microfluidic immunoassays with on-chip pre-stored reagents and centrifugo-pneumatic liquid control. Zhao Y; Czilwik G; Klein V; Mitsakakis K; Zengerle R; Paust N Lab Chip; 2017 May; 17(9):1666-1677. PubMed ID: 28426080 [TBL] [Abstract][Full Text] [Related]
4. A competitive immunoassay system for microfluidic paper-based analytical detection of small size molecules. Busa LS; Mohammadi S; Maeki M; Ishida A; Tani H; Tokeshi M Analyst; 2016 Nov; 141(24):6598-6603. PubMed ID: 27858015 [TBL] [Abstract][Full Text] [Related]
5. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Gervais L; Delamarche E Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397 [TBL] [Abstract][Full Text] [Related]
6. A capillary flow-driven microfluidic system for microparticle-labeled immunoassays. Khodayari Bavil A; Kim J Analyst; 2018 Jul; 143(14):3335-3342. PubMed ID: 29878004 [TBL] [Abstract][Full Text] [Related]
7. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. Tarn MD; Pamme N Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies. Lee G; Park I; Kwon K; Kwon T; Seo J; Chang WJ; Nam H; Cha GS; Choi MH; Yoon DS; Lee SW Biomed Microdevices; 2012 Apr; 14(2):375-84. PubMed ID: 22143877 [TBL] [Abstract][Full Text] [Related]
9. Autonomous capillary system for one-step immunoassays. Zimmermann M; Hunziker P; Delamarche E Biomed Microdevices; 2009 Feb; 11(1):1-8. PubMed ID: 18810643 [TBL] [Abstract][Full Text] [Related]
10. On-chip determination of C-reactive protein using magnetic particles in continuous flow. Phurimsak C; Tarn MD; Peyman SA; Greenman J; Pamme N Anal Chem; 2014 Nov; 86(21):10552-9. PubMed ID: 25275437 [TBL] [Abstract][Full Text] [Related]
11. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil. Ueland M; Blanes L; Taudte RV; Stuart BH; Cole N; Willis P; Roux C; Doble P J Chromatogr A; 2016 Mar; 1436():28-33. PubMed ID: 26850317 [TBL] [Abstract][Full Text] [Related]
12. An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads. Feng Z; Zhi S; Guo L; Zhou Y; Lei C Mikrochim Acta; 2019 Mar; 186(4):252. PubMed ID: 30903388 [TBL] [Abstract][Full Text] [Related]
13. Ultrasensitive detection of disease biomarkers using an immuno-wall device with enzymatic amplification. Nishiyama K; Kasama T; Nakamata S; Ishikawa K; Onoshima D; Yukawa H; Maeki M; Ishida A; Tani H; Baba Y; Tokeshi M Analyst; 2019 Aug; 144(15):4589-4595. PubMed ID: 31237262 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic immunoassay with plug-in liquid crystal for optical detection of antibody. Zhu Q; Yang KL Anal Chim Acta; 2015 Jan; 853():696-701. PubMed ID: 25467520 [TBL] [Abstract][Full Text] [Related]
16. A rapid and facile immunoassay for C-reactive protein using PDMS-based digital magnetofluidics. Ngernpradab P; Wongravee K; Srisa-Art M Anal Chim Acta; 2024 Sep; 1321():343044. PubMed ID: 39155093 [TBL] [Abstract][Full Text] [Related]
17. A Novel Thermal Bubble Valve Integrated Nanofluidic Preconcentrator for Highly Sensitive Biomarker Detection. Deng CZ; Fan YJ; Chung PS; Sheen HJ ACS Sens; 2018 Jul; 3(7):1409-1415. PubMed ID: 29888596 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric detection of D-dimer in a paper-based immunodetection device. Ruivo S; Azevedo AM; Prazeres DMF Anal Biochem; 2017 Dec; 538():5-12. PubMed ID: 28923311 [TBL] [Abstract][Full Text] [Related]
19. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection. Liu S; Su W; Ding X Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941634 [TBL] [Abstract][Full Text] [Related]
20. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. de Castro LF; de Freitas SV; Duarte LC; de Souza JAC; Paixão TRLC; Coltro WKT Anal Bioanal Chem; 2019 Jul; 411(19):4919-4928. PubMed ID: 30941478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]