These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
904 related articles for article (PubMed ID: 27544645)
1. Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: Equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies. Mondal S; Bobde K; Aikat K; Halder G J Environ Manage; 2016 Nov; 182():581-594. PubMed ID: 27544645 [TBL] [Abstract][Full Text] [Related]
2. A comparative study on defluoridation capabilities of biosorbents: isotherm, kinetics, thermodynamics, cost estimation, and eco-toxicological study. Mukherjee S; Dutta S; Ray S; Halder G Environ Sci Pollut Res Int; 2018 Jun; 25(18):17473-17489. PubMed ID: 29656358 [TBL] [Abstract][Full Text] [Related]
3. Adsorptive removal of perfluorooctanoic acid from aqueous matrices using peanut husk-derived magnetic biochar: Statistical and artificial intelligence approaches, kinetics, isotherm, and thermodynamics. Saawarn B; Mahanty B; Hait S Chemosphere; 2024 Jul; 360():142397. PubMed ID: 38782130 [TBL] [Abstract][Full Text] [Related]
4. Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies. Nayak AK; Pal A J Environ Manage; 2018 Jul; 217():573-591. PubMed ID: 29649730 [TBL] [Abstract][Full Text] [Related]
5. Biosorption of Co (II) from aqueous solution using algal biochar: Kinetics and isotherm studies. Bordoloi N; Goswami R; Kumar M; Kataki R Bioresour Technol; 2017 Nov; 244(Pt 2):1465-1469. PubMed ID: 28576482 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of methyl orange dye onto biochar adsorbent prepared from chicken manure. Yu J; Zhang X; Wang D; Li P Water Sci Technol; 2018 Mar; 77(5-6):1303-1312. PubMed ID: 29528318 [TBL] [Abstract][Full Text] [Related]
7. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling. Turk Sekulić M; Pap S; Stojanović Z; Bošković N; Radonić J; Šolević Knudsen T Sci Total Environ; 2018 Feb; 613-614():736-750. PubMed ID: 28938216 [TBL] [Abstract][Full Text] [Related]
8. Modeling of methylene blue removal on Fe Altintig E; Özcelik TÖ; Aydemir Z; Bozdag D; Kilic E; Yılmaz Yalçıner A Int J Phytoremediation; 2023; 25(13):1714-1732. PubMed ID: 36927305 [TBL] [Abstract][Full Text] [Related]
9. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling. Nayak AK; Pal A J Environ Manage; 2017 Sep; 200():145-159. PubMed ID: 28577452 [TBL] [Abstract][Full Text] [Related]
10. Rapid Removal of Toxic Remazol Brilliant Blue-R Dye from Aqueous Solutions Using Parimelazhagan V; Yashwath P; Arukkani Pushparajan D; Carpenter J Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293336 [TBL] [Abstract][Full Text] [Related]
11. A renewable, sustainable and low-cost adsorbent for ibuprofen removal. Bello OS; Alao OC; Alagbada TC; Agboola OS; Omotoba OT; Abikoye OR Water Sci Technol; 2021 Jan; 83(1):111-122. PubMed ID: 33460411 [TBL] [Abstract][Full Text] [Related]
12. Ni (II) adsorption onto Chrysanthemum indicum: Influencing factors, isotherms, kinetics, and thermodynamics. Vilvanathan S; Shanthakumar S Int J Phytoremediation; 2016 Oct; 18(10):1046-59. PubMed ID: 27185382 [TBL] [Abstract][Full Text] [Related]
13. Efficient removal of crystal violet from aqueous solutions with Centaurea stem as a novel biodegradable bioadsorbent using response surface methodology and simulated annealing: Kinetic, isotherm and thermodynamic studies. Naderi P; Shirani M; Semnani A; Goli A Ecotoxicol Environ Saf; 2018 Nov; 163():372-381. PubMed ID: 30059882 [TBL] [Abstract][Full Text] [Related]
14. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies. Jin T; Yuan W; Xue Y; Wei H; Zhang C; Li K Environ Sci Pollut Res Int; 2017 Feb; 24(6):5238-5248. PubMed ID: 28004365 [TBL] [Abstract][Full Text] [Related]
15. Magnetic activated charcoal/Fe Vinayagam R; Pai S; Murugesan G; Varadavenkatesan T; Narayanasamy S; Selvaraj R Chemosphere; 2022 Jan; 286(Pt 3):131938. PubMed ID: 34426299 [TBL] [Abstract][Full Text] [Related]
16. Artificial neural network and particle swarm optimization for removal of methyl orange by gold nanoparticles loaded on activated carbon and Tamarisk. Ghaedi M; Ghaedi AM; Ansari A; Mohammadi F; Vafaei A Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():639-54. PubMed ID: 24892545 [TBL] [Abstract][Full Text] [Related]
17. Effect of magnetic field on the removal of copper from aqueous solution using activated carbon derived from rice husk. Kamilya T; Mondal S; Saha R Environ Sci Pollut Res Int; 2022 Mar; 29(14):20017-20034. PubMed ID: 33394433 [TBL] [Abstract][Full Text] [Related]
18. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000 [TBL] [Abstract][Full Text] [Related]
19. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study. Maghsoudi M; Ghaedi M; Zinali A; Ghaedi AM; Habibi MH Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():1-9. PubMed ID: 24995412 [TBL] [Abstract][Full Text] [Related]
20. Sorption of carbendazim and linuron from aqueous solutions with activated carbon produced from spent coffee grounds: Equilibrium, kinetic and thermodynamic approach. Hgeig A; Novaković M; Mihajlović I J Environ Sci Health B; 2019; 54(4):226-236. PubMed ID: 30633640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]