These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
863 related articles for article (PubMed ID: 27544652)
1. Recycled asphalt pavement - fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Hoy M; Horpibulsuk S; Rachan R; Chinkulkijniwat A; Arulrajah A Sci Total Environ; 2016 Dec; 573():19-26. PubMed ID: 27544652 [TBL] [Abstract][Full Text] [Related]
2. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. Phummiphan I; Horpibulsuk S; Rachan R; Arulrajah A; Shen SL; Chindaprasirt P J Hazard Mater; 2018 Jan; 341():257-267. PubMed ID: 28797942 [TBL] [Abstract][Full Text] [Related]
3. Solidification/stabilization of ash from medical waste incineration into geopolymers. Tzanakos K; Mimilidou A; Anastasiadou K; Stratakis A; Gidarakos E Waste Manag; 2014 Oct; 34(10):1823-8. PubMed ID: 24785364 [TBL] [Abstract][Full Text] [Related]
4. Effect of fly ash on properties of crushed brick and reclaimed asphalt in pavement base/subbase applications. Mohammadinia A; Arulrajah A; Horpibulsuk S; Chinkulkijniwat A J Hazard Mater; 2017 Jan; 321():547-556. PubMed ID: 27684989 [TBL] [Abstract][Full Text] [Related]
5. Leaching of metals from asphalt pavement incorporating municipal solid waste incineration fly ash. Yang JZ; Yang Y; Li Y; Chen L; Zhang J; Die Q; Fang Y; Pan Y; Huang Q Environ Sci Pollut Res Int; 2018 Sep; 25(27):27106-27111. PubMed ID: 30022387 [TBL] [Abstract][Full Text] [Related]
6. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Chindaprasirt P; Jaturapitakkul C; Chalee W; Rattanasak U Waste Manag; 2009 Feb; 29(2):539-43. PubMed ID: 18715775 [TBL] [Abstract][Full Text] [Related]
7. Geopolymerisation of fly ashes with waste aluminium anodising etching solutions. Ogundiran MB; Nugteren HW; Witkamp GJ J Environ Manage; 2016 Oct; 181():118-123. PubMed ID: 27337520 [TBL] [Abstract][Full Text] [Related]
8. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash. Kalaw ME; Culaba A; Hinode H; Kurniawan W; Gallardo S; Promentilla MA Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773702 [TBL] [Abstract][Full Text] [Related]
9. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869 [TBL] [Abstract][Full Text] [Related]
10. Solidification/stabilization and leaching behavior of PbCl₂ in fly-ash hydrated silicate matrix and fly-ash geopolymer matrix. Li Y; Gao X; Wang Q; He J; Yan D Environ Sci Pollut Res Int; 2015 May; 22(9):6877-85. PubMed ID: 25471709 [TBL] [Abstract][Full Text] [Related]
11. Arsenic(V) immobilization in fly ash and mine tailing-based geopolymers: Performance and mechanism insight. Bah A; Jin J; Ramos AO; Bao Y; Ma M; Li F Chemosphere; 2022 Nov; 306():135636. PubMed ID: 35810868 [TBL] [Abstract][Full Text] [Related]
12. Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self cured geopolymer mortars. Karthik A; Sudalaimani K; Vijayakumar CT; Saravanakumar SS J Hazard Mater; 2019 Jan; 361():56-63. PubMed ID: 30176416 [TBL] [Abstract][Full Text] [Related]
13. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. Alvarez-Ayuso E; Querol X; Plana F; Alastuey A; Moreno N; Izquierdo M; Font O; Moreno T; Diez S; Vázquez E; Barra M J Hazard Mater; 2008 Jun; 154(1-3):175-83. PubMed ID: 18006153 [TBL] [Abstract][Full Text] [Related]
14. Valorization of lead-zinc mine tailing waste through geopolymerization: Synthesis, mechanical, and microstructural properties. Li D; Ramos AO; Bah A; Li F J Environ Manage; 2024 Jan; 349():119501. PubMed ID: 37952378 [TBL] [Abstract][Full Text] [Related]
15. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. Luna Galiano Y; Fernández Pereira C; Vale J J Hazard Mater; 2011 Jan; 185(1):373-81. PubMed ID: 20943314 [TBL] [Abstract][Full Text] [Related]
16. Cotreatment of MSWI Fly Ash and Granulated Lead Smelting Slag Using a Geopolymer System. Liu DG; Ke Y; Min XB; Liang YJ; Wang ZB; Li YC; Fei JC; Yao LW; Xu H; Jiang GH Int J Environ Res Public Health; 2019 Jan; 16(1):. PubMed ID: 30626070 [TBL] [Abstract][Full Text] [Related]
17. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: Based on partial charge model analysis. Zheng L; Wang W; Gao X Waste Manag; 2016 Dec; 58():270-279. PubMed ID: 27613416 [TBL] [Abstract][Full Text] [Related]
18. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Zheng L; Wang W; Shi Y Chemosphere; 2010 Apr; 79(6):665-71. PubMed ID: 20304461 [TBL] [Abstract][Full Text] [Related]
19. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals. Ji Z; Pei Y Chemosphere; 2019 Jun; 225():579-587. PubMed ID: 30901653 [TBL] [Abstract][Full Text] [Related]
20. Fly ash porous material using geopolymerization process for high temperature exposure. Abdullah MMAB; Jamaludin L; Hussin K; Bnhussain M; Ghazali CMR; Ahmad MI Int J Mol Sci; 2012; 13(4):4388-4395. PubMed ID: 22605984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]