BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1835 related articles for article (PubMed ID: 27544892)

  • 1. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
    Verjans JW; Osborn EA; Ughi GJ; Calfon Press MA; Hamidi E; Antoniadis AP; Papafaklis MI; Conrad MF; Libby P; Stone PH; Cambria RP; Tearney GJ; Jaffer FA
    JACC Cardiovasc Imaging; 2016 Sep; 9(9):1087-1095. PubMed ID: 27544892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.
    Lee S; Lee MW; Cho HS; Song JW; Nam HS; Oh DJ; Park K; Oh WY; Yoo H; Kim JW
    Circ Cardiovasc Interv; 2014 Aug; 7(4):560-9. PubMed ID: 25074255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery.
    Kim S; Lee MW; Kim TS; Song JW; Nam HS; Cho HS; Jang SJ; Ryu J; Oh DJ; Gweon DG; Park SH; Park K; Oh WY; Yoo H; Kim JW
    Eur Heart J; 2016 Oct; 37(37):2833-2844. PubMed ID: 26787442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activatable fluorescence imaging of macrophages in atherosclerotic plaques using iron oxide nanoparticles conjugated with indocyanine green.
    Ikeda H; Ishii A; Sano K; Chihara H; Arai D; Abekura Y; Nishi H; Ono M; Saji H; Miyamoto S
    Atherosclerosis; 2018 Aug; 275():1-10. PubMed ID: 29852399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques.
    Vinegoni C; Botnaru I; Aikawa E; Calfon MA; Iwamoto Y; Folco EJ; Ntziachristos V; Weissleder R; Libby P; Jaffer FA
    Sci Transl Med; 2011 May; 3(84):84ra45. PubMed ID: 21613624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging.
    Ughi GJ; Verjans J; Fard AM; Wang H; Osborn E; Hara T; Mauskapf A; Jaffer FA; Tearney GJ
    Int J Cardiovasc Imaging; 2015 Feb; 31(2):259-68. PubMed ID: 25341407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo near infrared fluorescence (NIRF) intravascular molecular imaging of inflammatory plaque, a multimodal approach to imaging of atherosclerosis.
    Calfon MA; Rosenthal A; Mallas G; Mauskapf A; Nudelman RN; Ntziachristos V; Jaffer FA
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21847078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage targeted theranostic strategy for accurate detection and rapid stabilization of the inflamed high-risk plaque.
    Song JW; Nam HS; Ahn JW; Park HS; Kang DO; Kim HJ; Kim YH; Han J; Choi JY; Lee SY; Kim S; Oh WY; Yoo H; Park K; Kim JW
    Theranostics; 2021; 11(18):8874-8893. PubMed ID: 34522216
    [No Abstract]   [Full Text] [Related]  

  • 9. Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging.
    Ughi GJ; Wang H; Gerbaud E; Gardecki JA; Fard AM; Hamidi E; Vacas-Jacques P; Rosenberg M; Jaffer FA; Tearney GJ
    JACC Cardiovasc Imaging; 2016 Nov; 9(11):1304-1314. PubMed ID: 26971006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative intravascular biological fluorescence-ultrasound imaging of coronary and peripheral arteries in vivo.
    Bozhko D; Osborn EA; Rosenthal A; Verjans JW; Hara T; Kellnberger S; Wissmeyer G; Ovsepian SV; McCarthy JR; Mauskapf A; Stein AF; Jaffer FA; Ntziachristos V
    Eur Heart J Cardiovasc Imaging; 2017 Nov; 18(11):1253-1261. PubMed ID: 28031233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens.
    Liu W; Xie Y; Wang C; Du Y; Nguyen C; Wang Z; Fan Z; Dong L; Liu Y; Bi X; An J; Gu C; Yu W; Li D
    J Cardiovasc Magn Reson; 2018 Apr; 20(1):27. PubMed ID: 29695254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PET Molecular Targets and Near-Infrared Fluorescence Imaging of Atherosclerosis.
    Celeng C; de Keizer B; Merkely B; de Jong P; Leiner T; Takx RAP
    Curr Cardiol Rep; 2018 Feb; 20(2):11. PubMed ID: 29435774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intravascular Molecular Imaging: Near-Infrared Fluorescence as a New Frontier.
    Khraishah H; Jaffer FA
    Front Cardiovasc Med; 2020; 7():587100. PubMed ID: 33330648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depiction of the vasa vasorum during carotid endarterectomy by intraoperative videoangiography.
    Katano H; Yamada K; Sakurai K; Takahashi S
    J Stroke Cerebrovasc Dis; 2014; 23(10):2920-2927. PubMed ID: 25440369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into echo-attenuated plaques, echolucent plaques, and plaques with spotty calcification: novel findings from comparisons among intravascular ultrasound, near-infrared spectroscopy, and pathological histology in 2,294 human coronary artery segments.
    Pu J; Mintz GS; Biro S; Lee JB; Sum ST; Madden SP; Burke AP; Zhang P; He B; Goldstein JA; Stone GW; Muller JE; Virmani R; Maehara A
    J Am Coll Cardiol; 2014 Jun; 63(21):2220-33. PubMed ID: 24681142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Intracoronary Plaque Imaging with Intravascular Ultrasound, Optical Coherence Tomography, and Near-Infrared Spectroscopy in Patients with Coronary Artery Disease.
    Hoang V; Grounds J; Pham D; Virani S; Hamzeh I; Qureshi AM; Lakkis N; Alam M
    Curr Atheroscler Rep; 2016 Sep; 18(9):57. PubMed ID: 27485540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimodality Intracoronary Imaging With Near-Infrared Spectroscopy and Intravascular Ultrasound in Asymptomatic Individuals With High Calcium Scores.
    Madder RD; VanOosterhout S; Klungle D; Mulder A; Elmore M; Decker JM; Langholz D; Boyden TF; Parker J; Muller JE
    Circ Cardiovasc Imaging; 2017 Oct; 10(10):. PubMed ID: 28982647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atheroma Susceptible to Thrombosis Exhibit Impaired Endothelial Permeability In Vivo as Assessed by Nanoparticle-Based Fluorescence Molecular Imaging.
    Stein-Merlob AF; Hara T; McCarthy JR; Mauskapf A; Hamilton JA; Ntziachristos V; Libby P; Jaffer FA
    Circ Cardiovasc Imaging; 2017 May; 10(5):. PubMed ID: 28487316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis.
    Costopoulos C; Brown AJ; Teng Z; Hoole SP; West NE; Samady H; Bennett MR
    Int J Cardiovasc Imaging; 2016 Jan; 32(1):189-200. PubMed ID: 26153522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 92.