These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 27544921)
21. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Jeong CY; Dodla SK; Wang JJ Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554 [TBL] [Abstract][Full Text] [Related]
22. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments. Balagurumurthy B; Srivastava V; Vinit ; Kumar J; Biswas B; Singh R; Gupta P; Kumar KL; Singh R; Bhaskar T Bioresour Technol; 2015; 188():273-9. PubMed ID: 25637279 [TBL] [Abstract][Full Text] [Related]
23. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches. Yavari S; Malakahmad A; Sapari NB Environ Sci Pollut Res Int; 2016 Sep; 23(18):17928-40. PubMed ID: 27255313 [TBL] [Abstract][Full Text] [Related]
24. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Yuan T; Tahmasebi A; Yu J Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840 [TBL] [Abstract][Full Text] [Related]
25. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis. Wang S; Li Z; Bai X; Yi W; Fu P Bioresour Technol; 2018 Nov; 268():323-331. PubMed ID: 30092486 [TBL] [Abstract][Full Text] [Related]
26. Carbonization of corncobs for the preparation of barbecue charcoal and combustion characteristics of corncob char. Kluska J; Ochnio M; Kardaś D Waste Manag; 2020 Mar; 105():560-565. PubMed ID: 32163835 [TBL] [Abstract][Full Text] [Related]
27. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Aboulkas A; Hammani H; El Achaby M; Bilal E; Barakat A; El Harfi K Bioresour Technol; 2017 Nov; 243():400-408. PubMed ID: 28688323 [TBL] [Abstract][Full Text] [Related]
28. Kinetic modeling of inherent mineral catalyzed NO reduction by biomass char. Wu XY; Song Q; Zhao HB; Zhang ZH; Yao Q Environ Sci Technol; 2014 Apr; 48(7):4184-90. PubMed ID: 24588459 [TBL] [Abstract][Full Text] [Related]
29. Production of Silicone Tetrachloride from Rice Husk by Chlorination and Performance of Mercury Adsorption from Aqueous Solution of the Chlorinated Residue. Mochizuki Y; Bud J; Liu J; Tsubouchi N ACS Omega; 2020 Nov; 5(45):29110-29120. PubMed ID: 33225142 [TBL] [Abstract][Full Text] [Related]
30. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation. Qian Y; Zhang J; Wang J Bioresour Technol; 2014 Dec; 174():95-102. PubMed ID: 25463787 [TBL] [Abstract][Full Text] [Related]
31. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor. Song Y; Tahmasebi A; Yu J Bioresour Technol; 2014 Dec; 174():204-11. PubMed ID: 25463801 [TBL] [Abstract][Full Text] [Related]
32. Possibilities of the utilization of char from the pyrolysis of tetrapak. Raclavská H; Růžičková J; Škrobánková H; Koval S; Kucbel M; Raclavský K; Švédová B; Pavlík P; Juchelková D J Environ Manage; 2018 Aug; 219():231-238. PubMed ID: 29747104 [TBL] [Abstract][Full Text] [Related]
33. [Adsorption of methylene blue from water by the biochars generated from crop residues]. Xu RK; Zhao AZ; Xiao SC; Yuan JH Huan Jing Ke Xue; 2012 Jan; 33(1):142-6. PubMed ID: 22452202 [TBL] [Abstract][Full Text] [Related]
34. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets. Hu Q; Yang H; Yao D; Zhu D; Wang X; Shao J; Chen H Bioresour Technol; 2016 Jan; 200():521-7. PubMed ID: 26524250 [TBL] [Abstract][Full Text] [Related]
35. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char. Yuan S; Dai ZH; Zhou ZJ; Chen XL; Yu GS; Wang FC Bioresour Technol; 2012 Apr; 109():188-97. PubMed ID: 22305541 [TBL] [Abstract][Full Text] [Related]
36. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass. Qian TT; Li DC; Jiang H Environ Sci Technol; 2014 Sep; 48(18):10734-42. PubMed ID: 25154038 [TBL] [Abstract][Full Text] [Related]
37. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor. Li S; Chen X; Liu A; Wang L; Yu G Bioresour Technol; 2014 Mar; 155():252-7. PubMed ID: 24457309 [TBL] [Abstract][Full Text] [Related]
38. Optimization of preparation of monolithic carbon foam from rice husk char for benzene leakage emergency. Peng X; Guo F; Zhang X; Shi N; Wu Y Environ Sci Pollut Res Int; 2018 Sep; 25(26):26046-26058. PubMed ID: 29968218 [TBL] [Abstract][Full Text] [Related]
39. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor. Li S; Chen X; Wang L; Liu A; Yu G Bioresour Technol; 2013 Nov; 148():24-9. PubMed ID: 24041762 [TBL] [Abstract][Full Text] [Related]
40. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials. Li D; Briens C; Berruti F Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]