These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 27544921)
41. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass: Effects of the cellulose. Wu Z; Wang S; Luo Z; Chen L; Meng H; Zhao J Bioresour Technol; 2017 Jul; 235():256-264. PubMed ID: 28371763 [TBL] [Abstract][Full Text] [Related]
42. Effects of Water Content and Particle Size on Yield and Reactivity of Lignite Chars Derived from Pyrolysis and Gasification. Huang Y; Wang Y; Zhou H; Gao Y; Xu D; Bai L; Zhang S Molecules; 2018 Oct; 23(10):. PubMed ID: 30360366 [TBL] [Abstract][Full Text] [Related]
43. Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza sativa L.) by fluidized bed pyrolyzer for future biorefinery approach. Eom IY; Kim JY; Lee SM; Cho TS; Yeo H; Choi JW Bioresour Technol; 2013 Jan; 128():664-72. PubMed ID: 23220113 [TBL] [Abstract][Full Text] [Related]
44. Volatile-char interactions during biomass pyrolysis: Cleavage of C-C bond in a β-5 lignin model dimer by amino-modified graphitized carbon nanotube. Huang Y; Liu S; Zhang J; Syed-Hassan SSA; Hu X; Sun H; Zhu X; Zhou J; Zhang S; Zhang H Bioresour Technol; 2020 Jul; 307():123192. PubMed ID: 32220819 [TBL] [Abstract][Full Text] [Related]
45. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor. Zhang W; Yuan C; Xu J; Yang X Bioresour Technol; 2015 May; 183():255-8. PubMed ID: 25728344 [TBL] [Abstract][Full Text] [Related]
46. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Mayakaduwa SS; Herath I; Ok YS; Mohan D; Vithanage M Environ Sci Pollut Res Int; 2017 Oct; 24(29):22755-22763. PubMed ID: 27553000 [TBL] [Abstract][Full Text] [Related]
47. Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars. Bernardo MMS; Madeira CAC; Dos Santos Nunes NCL; Dias DACM; Godinho DMB; de Jesus Pinto MF; do Nascimento Matos IAM; Carvalho APB; de Figueiredo Ligeiro Fonseca IM Environ Sci Pollut Res Int; 2017 Oct; 24(28):22698-22708. PubMed ID: 28815412 [TBL] [Abstract][Full Text] [Related]
48. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Manolikaki II; Mangolis A; Diamadopoulos E J Environ Manage; 2016 Oct; 181():536-543. PubMed ID: 27429359 [TBL] [Abstract][Full Text] [Related]
49. Kinetics characteristics of straw semi-char gasification with carbon dioxide. Xiao R; Yang W Bioresour Technol; 2016 May; 207():180-7. PubMed ID: 26890792 [TBL] [Abstract][Full Text] [Related]
50. Effects of biomass char structure on its gasification reactivity. Asadullah M; Zhang S; Min Z; Yimsiri P; Li CZ Bioresour Technol; 2010 Oct; 101(20):7935-43. PubMed ID: 20547451 [TBL] [Abstract][Full Text] [Related]
51. Adding value to gasification and co-pyrolysis chars as removal agents of Cr Godinho D; Dias D; Bernardo M; Lapa N; Fonseca I; Lopes H; Pinto F J Hazard Mater; 2017 Jan; 321():173-182. PubMed ID: 27619963 [TBL] [Abstract][Full Text] [Related]
52. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Claoston N; Samsuri AW; Ahmad Husni MH; Mohd Amran MS Waste Manag Res; 2014 Apr; 32(4):331-9. PubMed ID: 24643171 [TBL] [Abstract][Full Text] [Related]
53. Tar reduction in pyrolysis vapours from biomass over a hot char bed. Gilbert P; Ryu C; Sharifi V; Swithenbank J Bioresour Technol; 2009 Dec; 100(23):6045-51. PubMed ID: 19604685 [TBL] [Abstract][Full Text] [Related]
55. Structural evolution of maize stalk/char particles during pyrolysis. Fu P; Hu S; Sun L; Xiang J; Yang T; Zhang A; Zhang J Bioresour Technol; 2009 Oct; 100(20):4877-83. PubMed ID: 19481930 [TBL] [Abstract][Full Text] [Related]
56. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Xiao X; Chen B; Zhu L Environ Sci Technol; 2014 Mar; 48(6):3411-9. PubMed ID: 24601595 [TBL] [Abstract][Full Text] [Related]
57. Effect of temperature and pressure on characteristics and reactivity of biomass-derived chars. Recari J; Berrueco C; Abelló S; Montané D; Farriol X Bioresour Technol; 2014 Oct; 170():204-210. PubMed ID: 25146312 [TBL] [Abstract][Full Text] [Related]
58. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal. Makwana JP; Joshi AK; Athawale G; Singh D; Mohanty P Bioresour Technol; 2015 Feb; 178():45-52. PubMed ID: 25446789 [TBL] [Abstract][Full Text] [Related]
59. Fast pyrolysis char - Assessment of alternative uses within the bioliq® concept. Funke A; Niebel A; Richter D; Abbas MM; Müller AK; Radloff S; Paneru M; Maier J; Dahmen N; Sauer J Bioresour Technol; 2016 Jan; 200():905-13. PubMed ID: 26609947 [TBL] [Abstract][Full Text] [Related]
60. Study on product distributions and char morphology during rapid co-pyrolysis of platanus wood and lignite in a drop tube fixed-bed reactor. Meng H; Wang S; Chen L; Wu Z; Zhao J Bioresour Technol; 2016 Jun; 209():273-81. PubMed ID: 26985627 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]