BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 27545110)

  • 1. Histological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapies.
    Ueberberg S; Jütte H; Uhl W; Schmidt W; Nauck M; Montanya E; Tannapfel A; Meier J
    Diabetes Obes Metab; 2016 Dec; 18(12):1253-1262. PubMed ID: 27545110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemical assessment of glucagon-like peptide 1 receptor (GLP-1R) expression in the pancreas of patients with type 2 diabetes.
    Kirk RK; Pyke C; von Herrath MG; Hasselby JP; Pedersen L; Mortensen PG; Knudsen LB; Coppieters K
    Diabetes Obes Metab; 2017 May; 19(5):705-712. PubMed ID: 28094469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incretin Therapies Do Not Expand β-Cell Mass or Alter Pancreatic Histology in Young Male Mice.
    Cox AR; Lam CJ; Rankin MM; Rios JS; Chavez J; Bonnyman CW; King KB; Wells RA; Anthony D; Tu JX; Kim JJ; Li C; Kushner JA
    Endocrinology; 2017 Jun; 158(6):1701-1714. PubMed ID: 28323942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incretin mimetics and DPP-4 inhibitors: new approach to treatment of type 2 diabetes mellitus.
    Siddiqui NI
    Mymensingh Med J; 2009 Jan; 18(1):113-24. PubMed ID: 19182763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors.
    Butler AE; Campbell-Thompson M; Gurlo T; Dawson DW; Atkinson M; Butler PC
    Diabetes; 2013 Jul; 62(7):2595-604. PubMed ID: 23524641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incretin-based therapies in type 2 diabetes: a review of clinical results.
    Bosi E; Lucotti P; Setola E; Monti L; Piatti PM
    Diabetes Res Clin Pract; 2008 Dec; 82 Suppl 2():S102-7. PubMed ID: 19022515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incretin therapies in the management of elderly patients with type 2 diabetes mellitus.
    Bourdel-Marchasson I; Schweizer A; Dejager S
    Hosp Pract (1995); 2011 Feb; 39(1):7-21. PubMed ID: 21441754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing among incretin-based therapies. Pathophysiology of type 2 diabetes mellitus: potential role of incretin-based therapies.
    Campbell RK; Cobble ME; Reid TS; Shomali ME
    J Fam Pract; 2010 Sep; 59(9 Suppl 1):S5-9. PubMed ID: 20824239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The value of incretin based therapies].
    Gallwitz B
    Dtsch Med Wochenschr; 2009 May; 134(20):1062-6. PubMed ID: 19421931
    [No Abstract]   [Full Text] [Related]  

  • 10. Decreased α-cell mass and early structural alterations of the exocrine pancreas in patients with type 1 diabetes: An analysis based on the nPOD repository.
    Bonnet-Serrano F; Diedisheim M; Mallone R; Larger E
    PLoS One; 2018; 13(1):e0191528. PubMed ID: 29352311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [New hypoglycemic agents in type 2 diabetes].
    Guerci B; Halter C
    Rev Prat; 2010 Apr; 60(4):495-503. PubMed ID: 20465123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated recognition and quantification of pancreatic islets in Zucker diabetic fatty rats treated with exendin-4.
    Kakimoto T; Kimata H; Iwasaki S; Fukunari A; Utsumi H
    J Endocrinol; 2013 Jan; 216(1):13-20. PubMed ID: 23092878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of dipeptidyl peptidase-4 (CD26) to human pancreatic ducts and islet alpha cells.
    Augstein P; Naselli G; Loudovaris T; Hawthorne WJ; Campbell P; Bandala-Sanchez E; Rogers K; Heinke P; Thomas HE; Kay TW; Harrison LC
    Diabetes Res Clin Pract; 2015 Dec; 110(3):291-300. PubMed ID: 26515908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy deficiency in β cells blunts incretin-induced suppression of glucagon release from α cells.
    Kim MJ; Choi OK; Chae KS; Lee H; Chung SS; Ham DS; Kim JW; Yoon KH; Park KS; Jung HS
    Islets; 2015; 7(5):e1129096. PubMed ID: 26744903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focus on incretin-based therapies: targeting the core defects of type 2 diabetes.
    Jellinger PS
    Postgrad Med; 2011 Jan; 123(1):53-65. PubMed ID: 21293084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dysfunction of the pancreas in healthy smoking persons and patients with chronic pancreatitis.
    Milnerowicz H; Sliwinska-Mosson M; Rabczyński J; Nowak M; Milnerowicz S
    Pancreas; 2007 Jan; 34(1):46-54. PubMed ID: 17198182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis.
    Amori RE; Lau J; Pittas AG
    JAMA; 2007 Jul; 298(2):194-206. PubMed ID: 17622601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing among incretin-based therapies. Introduction.
    Campbell RK; Cobble ME; Reid TS; Shomali ME
    J Fam Pract; 2010 Sep; 59(9 Suppl 1):S3-4. PubMed ID: 20824238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies in rodents with the dipeptidyl peptidase-4 inhibitor vildagliptin to evaluate possible drug-induced pancreatic histological changes that are predictive of pancreatitis and cancer development in man.
    Busch SJ; Hoffmann P; Sahota P; Johnson R; Kothny W; Meyer F; Foley JE
    Diabetes Obes Metab; 2013 Jan; 15(1):72-6. PubMed ID: 22882290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolic syndrome influences the response to incretin-based therapies.
    Fadini GP; de Kreutzenberg SV; Gjini R; Avogaro A
    Acta Diabetol; 2011 Sep; 48(3):219-25. PubMed ID: 21574000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.