These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 27545205)

  • 41. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO
    Le Z; Liu F; Nie P; Li X; Liu X; Bian Z; Chen G; Wu HB; Lu Y
    ACS Nano; 2017 Mar; 11(3):2952-2960. PubMed ID: 28282109
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis, characterizations and electrochemical performances of anhydrous CoC
    Mishra NK; Mondal R; Singh P
    RSC Adv; 2021 Oct; 11(54):33926-33937. PubMed ID: 35497288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.
    Patil U; Lee SC; Kulkarni S; Sohn JS; Nam MS; Han S; Jun SC
    Nanoscale; 2015 Apr; 7(16):6999-7021. PubMed ID: 25807279
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage.
    Chambers A; Prawer S; Ahnood A; Zhan H
    Front Chem; 2022; 10():924127. PubMed ID: 35668830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors.
    Ilott AJ; Trease NM; Grey CP; Jerschow A
    Nat Commun; 2014 Aug; 5():4536. PubMed ID: 25082481
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Special Issue: Materials for Electrochemical Capacitors and Batteries.
    Wang JG; Wei B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772797
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Progress on Molybdenum Oxides for Rechargeable Batteries.
    Tang K; Farooqi SA; Wang X; Yan C
    ChemSusChem; 2019 Feb; 12(4):755-771. PubMed ID: 30478957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
    Zhao X; Sánchez BM; Dobson PJ; Grant PS
    Nanoscale; 2011 Mar; 3(3):839-55. PubMed ID: 21253650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineered nanomembranes for smart energy storage devices.
    Wang X; Chen Y; Schmidt OG; Yan C
    Chem Soc Rev; 2016 Mar; 45(5):1308-30. PubMed ID: 26691394
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Building Next-Generation Li-ion Capacitors with High Energy: An Approach beyond Intercalation.
    Aravindan V; Lee YS
    J Phys Chem Lett; 2018 Jul; 9(14):3946-3958. PubMed ID: 29975535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors.
    Zhu J; Roscow J; Chandrasekaran S; Deng L; Zhang P; He T; Wang K; Huang L
    ChemSusChem; 2020 Mar; 13(6):1275-1295. PubMed ID: 32061148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction Building Materials as a Potential for Structural Supercapacitor Applications.
    Basha SI; Shah SS; Ahmad S; Maslehuddin M; Al-Zahrani MM; Aziz MA
    Chem Rec; 2022 Nov; 22(11):e202200134. PubMed ID: 35832015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon.
    Pech D; Brunet M; Durou H; Huang P; Mochalin V; Gogotsi Y; Taberna PL; Simon P
    Nat Nanotechnol; 2010 Sep; 5(9):651-4. PubMed ID: 20711179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors.
    Park J; Kumar V; Wang X; Lee PS; Kim W
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33728-33734. PubMed ID: 28895724
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large energy storage efficiency of the dielectric layer of graphene nanocapacitors.
    Bezryadin A; Belkin A; Ilin E; Pak M; Colla EV; Hubler A
    Nanotechnology; 2017 Dec; 28(49):495401. PubMed ID: 29027908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.
    Mourad E; Coustan L; Lannelongue P; Zigah D; Mehdi A; Vioux A; Freunberger SA; Favier F; Fontaine O
    Nat Mater; 2017 Apr; 16(4):446-453. PubMed ID: 27893725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.