BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27545411)

  • 1. Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers.
    Sabareesan AT; Udgaonkar JB
    J Mol Biol; 2016 Oct; 428(20):3935-3947. PubMed ID: 27545411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization.
    Moulick R; Udgaonkar JB
    J Mol Biol; 2017 Mar; 429(6):886-899. PubMed ID: 28147229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural effects of multiple pathogenic mutations suggest a model for the initiation of misfolding of the prion protein.
    Singh J; Udgaonkar JB
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7529-33. PubMed ID: 25959220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionarily Conserved Proline Residues Impede the Misfolding of the Mouse Prion Protein by Destabilizing an Aggregation-competent Partially Unfolded Form.
    Pal S; Udgaonkar JB
    J Mol Biol; 2022 Dec; 434(23):167854. PubMed ID: 36228749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pathogenic Mutation T182A Converts the Prion Protein into a Molten Globule-like Conformation Whose Misfolding to Oligomers but Not to Fibrils Is Drastically Accelerated.
    Singh J; Udgaonkar JB
    Biochemistry; 2016 Jan; 55(3):459-69. PubMed ID: 26713717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations of evolutionarily conserved aromatic residues suggest that misfolding of the mouse prion protein may commence in multiple ways.
    Pal S; Udgaonkar JB
    J Neurochem; 2023 Dec; 167(5):696-710. PubMed ID: 37941487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity.
    Yen CF; Harischandra DS; Kanthasamy A; Sivasankar S
    Sci Adv; 2016 Jul; 2(7):e1600014. PubMed ID: 27419232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR.
    Sengupta I; Bhate SH; Das R; Udgaonkar JB
    J Mol Biol; 2017 Jun; 429(12):1852-1872. PubMed ID: 28502793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the Molecular Mechanism of pH-Induced Misfolding and Oligomerization of the Prion Protein.
    Singh J; Udgaonkar JB
    J Mol Biol; 2016 Mar; 428(6):1345-1355. PubMed ID: 26854758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrogating the Dimerization Interface of the Prion Protein Via Site-Specific Mutations to p-Benzoyl-L-Phenylalanine.
    Sangeetham SB; Huszár K; Bencsura P; Nyeste A; Hunyadi-Gulyás É; Fodor E; Welker E
    J Mol Biol; 2018 Aug; 430(17):2784-2801. PubMed ID: 29778603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pathogenic A116V Mutation Enhances Ion-Selective Channel Formation by Prion Protein in Membranes.
    Sabareesan AT; Singh J; Roy S; Udgaonkar JB; Mathew MK
    Biophys J; 2016 Apr; 110(8):1766-1776. PubMed ID: 27119637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein.
    Leliveld SR; Stitz L; Korth C
    Biochemistry; 2008 Jun; 47(23):6267-78. PubMed ID: 18473442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds.
    Chamachi NG; Chakrabarty S
    Biochemistry; 2017 Feb; 56(6):833-844. PubMed ID: 28102071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring site-specific conformational changes in real-time reveals a misfolding mechanism of the prion protein.
    Sengupta I; Udgaonkar J
    Elife; 2019 Jun; 8():. PubMed ID: 31232689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy migration captures membrane-induced oligomerization of the prion protein.
    Agarwal A; Das D; Banerjee T; Mukhopadhyay S
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140324. PubMed ID: 31740413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical Analysis of Interaction between Kringle Domains of Plasminogen and Prion Proteins with Q167R Mutation.
    Lee J; Lee BW; Kang HE; Choe KK; Kwon M; Ryou C
    J Microbiol Biotechnol; 2017 May; 27(5):1023-1031. PubMed ID: 28274104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The G126V Mutation in the Mouse Prion Protein Hinders Nucleation-Dependent Fibril Formation by Slowing Initial Fibril Growth and by Increasing the Critical Concentration.
    Sabareesan AT; Udgaonkar JB
    Biochemistry; 2017 Nov; 56(44):5931-5942. PubMed ID: 29045139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping.
    Mondal B; Reddy G
    Biochemistry; 2020 Jan; 59(1):114-124. PubMed ID: 31538469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.