These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27545677)

  • 1. Determinants of Power in Gene-Based Burden Testing for Monogenic Disorders.
    Guo MH; Dauber A; Lippincott MF; Chan YM; Salem RM; Hirschhorn JN
    Am J Hum Genet; 2016 Sep; 99(3):527-539. PubMed ID: 27545677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical guidance for experimental design and data analysis of mutation detection in rare monogenic mendelian diseases by exome sequencing.
    Zhi D; Chen R
    PLoS One; 2012; 7(2):e31358. PubMed ID: 22348076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Exome sequencing: an efficient strategy for identifying the causative genes of monogenic disorders].
    Rebiya N; Patamu M
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2011 Oct; 28(5):525-7. PubMed ID: 21983726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence estimation for monogenic autosomal recessive diseases using population-based genetic data.
    Schrodi SJ; DeBarber A; He M; Ye Z; Peissig P; Van Wormer JJ; Haws R; Brilliant MH; Steiner RD
    Hum Genet; 2015 Jun; 134(6):659-69. PubMed ID: 25893794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real world scenarios in rare variant association analysis: the impact of imbalance and sample size on the power in silico.
    Zhang X; Basile AO; Pendergrass SA; Ritchie MD
    BMC Bioinformatics; 2019 Jan; 20(1):46. PubMed ID: 30669967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The number of candidate variants in exome sequencing for Mendelian disease under no genetic heterogeneity.
    Nishino J; Mano S
    Comput Math Methods Med; 2013; 2013():179761. PubMed ID: 23762180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burden Testing of Rare Variants Identified through Exome Sequencing via Publicly Available Control Data.
    Guo MH; Plummer L; Chan YM; Hirschhorn JN; Lippincott MF
    Am J Hum Genet; 2018 Oct; 103(4):522-534. PubMed ID: 30269813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-analysis of sequencing studies with heterogeneous genetic associations.
    Tang ZZ; Lin DY
    Genet Epidemiol; 2014 Jul; 38(5):389-401. PubMed ID: 24799183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-Informed Gene Ranking Tackles Genetic Heterogeneity in Exome-Sequencing Studies of Monogenic Disease.
    Dand N; Schulz R; Weale ME; Southgate L; Oakey RJ; Simpson MA; Schlitt T
    Hum Mutat; 2015 Dec; 36(12):1135-44. PubMed ID: 26394720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging ancestry to improve causal variant identification in exome sequencing for monogenic disorders.
    Brown R; Lee H; Eskin A; Kichaev G; Lohmueller KE; Reversade B; Nelson SF; Pasaniuc B
    Eur J Hum Genet; 2016 Jan; 24(1):113-9. PubMed ID: 25898925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases.
    Abreu PC; Greenberg DA; Hodge SE
    Am J Hum Genet; 1999 Sep; 65(3):847-57. PubMed ID: 10441591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering of predicted loss-of-function variants in genes linked with monogenic disease can explain incomplete penetrance.
    Beaumont RN; Hawkes G; Gunning AC; Wright CF
    Genome Med; 2024 Apr; 16(1):64. PubMed ID: 38671509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The power of gene-based rare variant methods to detect disease-associated variation and test hypotheses about complex disease.
    Moutsianas L; Agarwala V; Fuchsberger C; Flannick J; Rivas MA; Gaulton KJ; Albers PK; ; McVean G; Boehnke M; Altshuler D; McCarthy MI
    PLoS Genet; 2015 Apr; 11(4):e1005165. PubMed ID: 25906071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the Power of Exome Chips.
    Page CM; Baranzini SE; Mevik BH; Bos SD; Harbo HF; Andreassen BK
    PLoS One; 2015; 10(10):e0139642. PubMed ID: 26437075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting gene-environment interaction to detect genetic associations.
    Kraft P; Yen YC; Stram DO; Morrison J; Gauderman WJ
    Hum Hered; 2007; 63(2):111-9. PubMed ID: 17283440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SimPEL: Simulation-based power estimation for sequencing studies of low-prevalence conditions.
    Mak L; Li M; Cao C; Gordon P; Tarailo-Graovac M; Bousman C; Wang P; Long Q
    Genet Epidemiol; 2018 Jul; 42(5):480-487. PubMed ID: 29790190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome screens using linkage disequilibrium tests: optimal marker characteristics and feasibility.
    Chapman NH; Wijsman EM
    Am J Hum Genet; 1998 Dec; 63(6):1872-85. PubMed ID: 9837839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal models for investigating complex genetic disease: II. what causal models can tell us about penetrance for additive, heterogeneity, and multiplicative two-locus models.
    Madsen AM; Ottman R; Hodge SE
    Hum Hered; 2011; 72(1):63-72. PubMed ID: 21912139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association mapping of complex diseases in linked regions: estimation of genetic effects and feasibility of testing rare variants.
    Wang WY; Cordell HJ; Todd JA
    Genet Epidemiol; 2003 Jan; 24(1):36-43. PubMed ID: 12508254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exome sequencing for gene discovery in lethal fetal disorders--harnessing the value of extreme phenotypes.
    Filges I; Friedman JM
    Prenat Diagn; 2015 Oct; 35(10):1005-9. PubMed ID: 25046514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.