These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27545689)

  • 1. Tuneable on-demand single-photon source in the microwave range.
    Peng ZH; de Graaf SE; Tsai JS; Astafiev OV
    Nat Commun; 2016 Aug; 7():12588. PubMed ID: 27545689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit.
    Liu YX; Sun HC; Peng ZH; Miranowicz A; Tsai JS; Nori F
    Sci Rep; 2014 Dec; 4():7289. PubMed ID: 25487352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single microwave-photon detector using an artificial Λ-type three-level system.
    Inomata K; Lin Z; Koshino K; Oliver WD; Tsai JS; Yamamoto T; Nakamura Y
    Nat Commun; 2016 Jul; 7():12303. PubMed ID: 27453153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of a single-photon router in the microwave regime.
    Hoi IC; Wilson CM; Johansson G; Palomaki T; Peropadre B; Delsing P
    Phys Rev Lett; 2011 Aug; 107(7):073601. PubMed ID: 21902392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit.
    Kyriienko O; Sørensen AS
    Phys Rev Lett; 2016 Sep; 117(14):140503. PubMed ID: 27740803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system.
    Zhang X; Li R; Wu H
    Sci Rep; 2016 Mar; 6():22560. PubMed ID: 26936334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations and Entanglement of Microwave Photons Emitted in a Cascade Decay.
    Gasparinetti S; Pechal M; Besse JC; Mondal M; Eichler C; Wallraff A
    Phys Rev Lett; 2017 Oct; 119(14):140504. PubMed ID: 29053288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single artificial-atom lasing.
    Astafiev O; Inomata K; Niskanen AO; Yamamoto T; Pashkin YA; Nakamura Y; Tsai JS
    Nature; 2007 Oct; 449(7162):588-90. PubMed ID: 17914393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies.
    Tettamanzi GC; Hile SJ; House MG; Fuechsle M; Rogge S; Simmons MY
    ACS Nano; 2017 Mar; 11(3):2444-2451. PubMed ID: 28351121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photon-photon quantum gate based on a single atom in an optical resonator.
    Hacker B; Welte S; Rempe G; Ritter S
    Nature; 2016 Aug; 536(7615):193-6. PubMed ID: 27383791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic Loading of Microwaves onto an Artificial Atom Using a Time-Reversed Waveform.
    Lin WJ; Lu Y; Wen PY; Cheng YT; Lee CP; Lin KT; Chiang KH; Hsieh MC; Chen CY; Chien CH; Lin JJ; Chen JC; Lin YH; Chuu CS; Nori F; Frisk Kockum A; Lin GD; Delsing P; Hoi IC
    Nano Lett; 2022 Oct; 22(20):8137-8142. PubMed ID: 36200986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant cross-Kerr effect for propagating microwaves induced by an artificial atom.
    Hoi IC; Kockum AF; Palomaki T; Stace TM; Fan B; Tornberg L; Sathyamoorthy SR; Johansson G; Delsing P; Wilson CM
    Phys Rev Lett; 2013 Aug; 111(5):053601. PubMed ID: 23952397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous generation of single photons with controlled waveform in an ion-trap cavity system.
    Keller M; Lange B; Hayasaka K; Lange W; Walther H
    Nature; 2004 Oct; 431(7012):1075-8. PubMed ID: 15510142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar.
    Ding X; He Y; Duan ZC; Gregersen N; Chen MC; Unsleber S; Maier S; Schneider C; Kamp M; Höfling S; Lu CY; Pan JW
    Phys Rev Lett; 2016 Jan; 116(2):020401. PubMed ID: 26824530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system.
    Tang J; Geng W; Xu X
    Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling spin relaxation with a cavity.
    Bienfait A; Pla JJ; Kubo Y; Zhou X; Stern M; Lo CC; Weis CD; Schenkel T; Vion D; Esteve D; Morton JJ; Bertet P
    Nature; 2016 Mar; 531(7592):74-7. PubMed ID: 26878235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave photon counter based on Josephson junctions.
    Chen YF; Hover D; Sendelbach S; Maurer L; Merkel ST; Pritchett EJ; Wilhelm FK; McDermott R
    Phys Rev Lett; 2011 Nov; 107(21):217401. PubMed ID: 22181922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures.
    Dey S; Zhou Y; Sun Y; Jenkins JA; Kriz D; Suib SL; Chen O; Zou S; Zhao J
    Nanoscale; 2018 Jan; 10(3):1038-1046. PubMed ID: 29265148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.