These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27546225)

  • 1. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications.
    Zequine C; Ranaweera CK; Wang Z; Singh S; Tripathi P; Srivastava ON; Gupta BK; Ramasamy K; Kahol PK; Dvornic PR; Gupta RK
    Sci Rep; 2016 Aug; 6():31704. PubMed ID: 27546225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach.
    Zequine C; Ranaweera CK; Wang Z; Dvornic PR; Kahol PK; Singh S; Tripathi P; Srivastava ON; Singh S; Gupta BK; Gupta G; Gupta RK
    Sci Rep; 2017 Apr; 7(1):1174. PubMed ID: 28446782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.
    Li N; Xu J; Chen H; Wang X
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5157-65. PubMed ID: 24757995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications.
    Gupta RK; Candler J; Palchoudhury S; Ramasamy K; Gupta BK
    Sci Rep; 2015 Oct; 5():15265. PubMed ID: 26482921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes.
    Yaddanapudi HS; Tian K; Teng S; Tiwari A
    Sci Rep; 2016 Sep; 6():33659. PubMed ID: 27651005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
    Karnan M; Subramani K; Sudhan N; Ilayaraja N; Sathish M
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35191-35202. PubMed ID: 27977134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor.
    Yu J; Wu J; Wang H; Zhou A; Huang C; Bai H; Li L
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4724-9. PubMed ID: 26830192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NiMoO
    Reddy AE; Anitha T; Muralee Gopi CVV; Srinivasa Rao S; Kim HJ
    Dalton Trans; 2018 Jul; 47(27):9057-9063. PubMed ID: 29930997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polypyrrole-MnO₂-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability.
    Yun TG; Hwang Bi; Kim D; Hyun S; Han SM
    ACS Appl Mater Interfaces; 2015 May; 7(17):9228-34. PubMed ID: 25856260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.
    Li W; Gao F; Wang X; Zhang N; Ma M
    Angew Chem Int Ed Engl; 2016 Aug; 55(32):9196-201. PubMed ID: 27328742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Growing BCN Nanotubes on Carbon Fibers for Novel High-Temperature Supercapacitor with Excellent Cycling Performance.
    Liang Z; Tu H; Shi D; Chen F; Jiang H; Shao Y; Wu Y; Hao X
    Small; 2021 Dec; 17(51):e2102899. PubMed ID: 34643040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable fabrication of NiV
    Li Y; Sun H; Yang Y; Cao Y; Zhou W; Chai H
    J Colloid Interface Sci; 2020 Nov; 580():298-307. PubMed ID: 32698084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible superior electrode architectures based on three-dimensional porous spinous α-Fe2O3 with a high performance as a supercapacitor.
    Nan H; Yu L; Ma W; Geng B; Zhang X
    Dalton Trans; 2015 May; 44(20):9581-7. PubMed ID: 25921621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications.
    Thangappan R; Kalaiselvam S; Elayaperumal A; Jayavel R; Arivanandhan M; Karthikeyan R; Hayakawa Y
    Dalton Trans; 2016 Feb; 45(6):2637-46. PubMed ID: 26732466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene.
    Liao Q; Li N; Jin S; Yang G; Wang C
    ACS Nano; 2015 May; 9(5):5310-7. PubMed ID: 25938705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Writing Supercapacitors Using a Carbon Nanotube/Ag Nanoparticle-Based Ink on Cellulose Acetate Membrane Paper.
    Guan X; Cao L; Huang Q; Kong D; Zhang P; Lin H; Li W; Lin Z; Yuan H
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31163632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Energy Flexible Supercapacitor-Synergistic Effects of Polyhydroquinone and RuO
    Muniraj VKA; Dwivedi PK; Tamhane PS; Szunerits S; Boukherroub R; Shelke MV
    ACS Appl Mater Interfaces; 2019 May; 11(20):18349-18360. PubMed ID: 31059221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications.
    Gong X; Li S; Lee PS
    Nanoscale; 2017 Aug; 9(30):10794-10801. PubMed ID: 28726969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ synthesis of polyaniline/carbon nanotube composites in a carbonized wood scaffold for high performance supercapacitors.
    Wu W; Wang X; Deng Y; Zhou C; Wang Z; Zhang M; Li X; Wu Y; Luo Y; Chen D
    Nanoscale; 2020 Sep; 12(34):17738-17745. PubMed ID: 32820759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.