These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Universal features of the free-energy functional at the freezing transition for repulsive potentials. Verma A; Ford DM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051110. PubMed ID: 21728493 [TBL] [Abstract][Full Text] [Related]
6. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids. Warshavsky VB; Ford DM; Monson PA J Chem Phys; 2018 Jan; 148(2):024502. PubMed ID: 29331120 [TBL] [Abstract][Full Text] [Related]
7. Phase diagrams of hard-core repulsive Yukawa particles. Hynninen AP; Dijkstra M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021407. PubMed ID: 14524973 [TBL] [Abstract][Full Text] [Related]
8. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals. Wang F; Han Y J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411 [TBL] [Abstract][Full Text] [Related]
10. Density-functional theory for fluid-solid and solid-solid phase transitions. Bharadwaj AS; Singh Y Phys Rev E; 2017 Mar; 95(3-1):032120. PubMed ID: 28415240 [TBL] [Abstract][Full Text] [Related]
11. Liquid-liquid phase transition in a two-dimensional system with anomalous liquid properties. Urbic T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062303. PubMed ID: 24483440 [TBL] [Abstract][Full Text] [Related]
12. Phase diagram of the Gaussian-core model. Prestipino S; Saija F; Giaquinta PV Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):050102. PubMed ID: 16089510 [TBL] [Abstract][Full Text] [Related]
13. Path integral Monte Carlo study of quantum-hard sphere solids. Sesé LM J Chem Phys; 2013 Jul; 139(4):044502. PubMed ID: 23901988 [TBL] [Abstract][Full Text] [Related]
14. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis. Paula Leite R; Santos-Flórez PA; de Koning M Phys Rev E; 2017 Sep; 96(3-1):032115. PubMed ID: 29346937 [TBL] [Abstract][Full Text] [Related]
15. Revisiting the phase diagram of hard ellipsoids. Odriozola G J Chem Phys; 2012 Apr; 136(13):134505. PubMed ID: 22482570 [TBL] [Abstract][Full Text] [Related]
16. Perturbation theory of solid-liquid interfacial free energies of bcc metals. Warshavsky VB; Song X Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031602. PubMed ID: 23030924 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory. Díez A; Largo J; Solana JR J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133 [TBL] [Abstract][Full Text] [Related]
18. Why all crystals need not be bcc: symmetry breaking at the liquid-solid transition revisited. Groh B; Mulder B Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5613-20. PubMed ID: 11969543 [TBL] [Abstract][Full Text] [Related]
19. Free energy barriers for homogeneous crystal nucleation in a eutectic system of binary hard spheres. Ganagalla SR; Punnathanam SN J Chem Phys; 2013 May; 138(17):174503. PubMed ID: 23656140 [TBL] [Abstract][Full Text] [Related]
20. Density-functional theory study of the body-centered-cubic and cI16 hard-sphere crystals. Warshavsky VB; Monson PA; Ford DM J Chem Phys; 2019 Apr; 150(13):134506. PubMed ID: 30954047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]