These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27546561)

  • 1. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors.
    Jiang DE; Wu J
    J Phys Chem Lett; 2013 Apr; 4(8):1260-7. PubMed ID: 26282139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?
    Kondrat S; Kornyshev AA
    Nanoscale Horiz; 2016 Jan; 1(1):45-52. PubMed ID: 32260601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Insights into the Structures and Capacitive Performances of Confined Ionic Liquids.
    Yang J; Ding Y; Lian C; Ying S; Liu H
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32213943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charging dynamics of supercapacitors with narrow cylindrical nanopores.
    Lee AA; Kondrat S; Oshanin G; Kornyshev AA
    Nanotechnology; 2014 Aug; 25(31):315401. PubMed ID: 25026503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations.
    Uralcan B; Uralcan IB
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode.
    Jiang DE; Wu J
    Nanoscale; 2014 May; 6(10):5545-50. PubMed ID: 24733527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating charging dynamics in subnanometre pores.
    Kondrat S; Wu P; Qiao R; Kornyshev AA
    Nat Mater; 2014 Apr; 13(4):387-93. PubMed ID: 24651430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomass-based Hierarchical Porous Carbon for Supercapacitors: Effect of Aqueous and Organic Electrolytes on the Electrochemical Performance.
    Chen Z; Wang X; Ding Z; Wei Q; Wang Z; Yang X; Qiu J
    ChemSusChem; 2019 Dec; 12(23):5099-5110. PubMed ID: 31612622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.
    Pizio O; Sokołowski S
    J Chem Phys; 2013 May; 138(20):204715. PubMed ID: 23742508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode.
    Kim M; Oh I; Kim J
    Phys Chem Chem Phys; 2015 Jul; 17(25):16367-74. PubMed ID: 26051533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors.
    Pak AJ; Hwang GS
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does capillary evaporation limit the accessibility of nonaqueous electrolytes to the ultrasmall pores of carbon electrodes?
    Liu K; Zhang P; Wu J
    J Chem Phys; 2018 Dec; 149(23):234708. PubMed ID: 30579302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superionic liquids in conducting nanoslits: A variety of phase transitions and ensuing charging behavior.
    Dudka M; Kondrat S; Bénichou O; Kornyshev AA; Oshanin G
    J Chem Phys; 2019 Nov; 151(18):184105. PubMed ID: 31731872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.