These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27546612)

  • 1. Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding.
    Beedle AE; Lynham S; Garcia-Manyes S
    Nat Commun; 2016 Aug; 7():12490. PubMed ID: 27546612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM
    FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding.
    Rehder DS; Borges CR
    Biochemistry; 2010 Sep; 49(35):7748-55. PubMed ID: 20712299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical dissection of an essential redox switch in yeast.
    Paulsen CE; Carroll KS
    Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein sulfenic acids in redox signaling.
    Poole LB; Karplus PA; Claiborne A
    Annu Rev Pharmacol Toxicol; 2004; 44():325-47. PubMed ID: 14744249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global, in situ, site-specific analysis of protein S-sulfenylation.
    Yang J; Gupta V; Tallman KA; Porter NA; Carroll KS; Liebler DC
    Nat Protoc; 2015 Jul; 10(7):1022-37. PubMed ID: 26086405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus.
    Poor CB; Chen PR; Duguid E; Rice PA; He C
    J Biol Chem; 2009 Aug; 284(35):23517-24. PubMed ID: 19586910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification.
    Forman HJ; Davies MJ; Krämer AC; Miotto G; Zaccarin M; Zhang H; Ursini F
    Arch Biochem Biophys; 2017 Mar; 617():26-37. PubMed ID: 27693037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
    Peskin AV; Dickerhof N; Poynton RA; Paton LN; Pace PE; Hampton MB; Winterbourn CC
    J Biol Chem; 2013 May; 288(20):14170-14177. PubMed ID: 23543738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Mediated Sulfenic Acid Generation from Photocaged Cysteine Sulfoxide.
    Pan J; Carroll KS
    Org Lett; 2015 Dec; 17(24):6014-7. PubMed ID: 26641493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.
    Heppner DE; Janssen-Heininger YMW; van der Vliet A
    Arch Biochem Biophys; 2017 Feb; 616():40-46. PubMed ID: 28126370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments.
    Wood ST; Long DL; Reisz JA; Yammani RR; Burke EA; Klomsiri C; Poole LB; Furdui CM; Loeser RF
    Arthritis Rheumatol; 2016 Jan; 68(1):117-26. PubMed ID: 26314228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the cysteine sulfenic acid O-sulfenylation of 1,3-cyclohexanedione.
    Freeman F
    Chem Commun (Camb); 2014 Apr; 50(31):4102-4. PubMed ID: 24619216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.
    Saurin AT; Neubert H; Brennan JP; Eaton P
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17982-7. PubMed ID: 15604151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana.
    Zaffagnini M; Fermani S; Calvaresi M; Orrù R; Iommarini L; Sparla F; Falini G; Bottoni A; Trost P
    Antioxid Redox Signal; 2016 Mar; 24(9):502-17. PubMed ID: 26650776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new role for Escherichia coli DsbC protein in protection against oxidative stress.
    Denoncin K; Vertommen D; Arts IS; Goemans CV; Rahuel-Clermont S; Messens J; Collet JF
    J Biol Chem; 2014 May; 289(18):12356-64. PubMed ID: 24634211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using DCP-Rho1 as a fluorescent probe to visualize sulfenic acid-containing proteins in living plant cells.
    Lara-Rojas F; Sarmiento-López LG; Pascual-Morales E; Ryken SE; Bezanilla M; Cardenas L
    Methods Enzymol; 2023; 683():291-308. PubMed ID: 37087193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation, reactivity, and detection of protein sulfenic acids.
    Kettenhofen NJ; Wood MJ
    Chem Res Toxicol; 2010 Nov; 23(11):1633-46. PubMed ID: 20845928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families.
    Defelipe LA; Lanzarotti E; Gauto D; Marti MA; Turjanski AG
    PLoS Comput Biol; 2015 Mar; 11(3):e1004051. PubMed ID: 25741692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.