These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 27546787)
1. Molecular Mechanism and Clinical Relevance of Ketamine as Rapid-Acting Antidepressant. Pešić V; Petrović J; M Jukić M Drug Dev Res; 2016 Nov; 77(7):414-422. PubMed ID: 27546787 [TBL] [Abstract][Full Text] [Related]
2. Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Carreno FR; Donegan JJ; Boley AM; Shah A; DeGuzman M; Frazer A; Lodge DJ Mol Psychiatry; 2016 Sep; 21(9):1298-308. PubMed ID: 26619811 [TBL] [Abstract][Full Text] [Related]
3. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress. Franceschelli A; Sens J; Herchick S; Thelen C; Pitychoutis PM Neuroscience; 2015 Apr; 290():49-60. PubMed ID: 25595985 [TBL] [Abstract][Full Text] [Related]
4. Sex Differences in the Temporal Neuromolecular and Synaptogenic Effects of the Rapid-acting Antidepressant Drug Ketamine in the Mouse Brain. Thelen C; Flaherty E; Saurine J; Sens J; Mohamed S; Pitychoutis PM Neuroscience; 2019 Feb; 398():182-192. PubMed ID: 30537521 [TBL] [Abstract][Full Text] [Related]
5. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice. Lindholm JS; Autio H; Vesa L; Antila H; Lindemann L; Hoener MC; Skolnick P; Rantamäki T; Castrén E Neuropharmacology; 2012 Jan; 62(1):391-7. PubMed ID: 21867718 [TBL] [Abstract][Full Text] [Related]
7. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pham TH; Gardier AM Pharmacol Ther; 2019 Jul; 199():58-90. PubMed ID: 30851296 [TBL] [Abstract][Full Text] [Related]
8. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Réus GZ; Stringari RB; Ribeiro KF; Ferraro AK; Vitto MF; Cesconetto P; Souza CT; Quevedo J Behav Brain Res; 2011 Aug; 221(1):166-71. PubMed ID: 21397634 [TBL] [Abstract][Full Text] [Related]
9. The Rapidly Acting Antidepressant Ketamine and the mGlu2/3 Receptor Antagonist LY341495 Rapidly Engage Dopaminergic Mood Circuits. Witkin JM; Monn JA; Schoepp DD; Li X; Overshiner C; Mitchell SN; Carter G; Johnson B; Rasmussen K; Rorick-Kehn LM J Pharmacol Exp Ther; 2016 Jul; 358(1):71-82. PubMed ID: 27189960 [TBL] [Abstract][Full Text] [Related]
10. The role of eEF2 kinase in the rapid antidepressant actions of ketamine. Suzuki K; Monteggia LM Adv Pharmacol; 2020; 89():79-99. PubMed ID: 32616215 [TBL] [Abstract][Full Text] [Related]
11. Fast-acting antidepressant-like effects of ketamine in aged male rats. Hernández-Hernández E; Ledesma-Corvi S; Jornet-Plaza J; García-Fuster MJ Pharmacol Rep; 2024 Oct; 76(5):991-1000. PubMed ID: 39158787 [TBL] [Abstract][Full Text] [Related]
12. The mood stabilizer lithium potentiates the antidepressant-like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress. Chiu CT; Scheuing L; Liu G; Liao HM; Linares GR; Lin D; Chuang DM Int J Neuropsychopharmacol; 2014 Dec; 18(6):. PubMed ID: 25548109 [TBL] [Abstract][Full Text] [Related]
13. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test. Li Y; Zhu ZR; Ou BC; Wang YQ; Tan ZB; Deng CM; Gao YY; Tang M; So JH; Mu YL; Zhang LQ Behav Brain Res; 2015 Feb; 279():100-5. PubMed ID: 25449845 [TBL] [Abstract][Full Text] [Related]
14. A Negative Allosteric Modulator for α5 Subunit-Containing GABA Receptors Exerts a Rapid and Persistent Antidepressant-Like Action without the Side Effects of the NMDA Receptor Antagonist Ketamine in Mice. Zanos P; Nelson ME; Highland JN; Krimmel SR; Georgiou P; Gould TD; Thompson SM eNeuro; 2017; 4(1):. PubMed ID: 28275719 [TBL] [Abstract][Full Text] [Related]
15. Antidepressant Potential of ( Fukumoto K; Toki H; Iijima M; Hashihayata T; Yamaguchi JI; Hashimoto K; Chaki S J Pharmacol Exp Ther; 2017 Apr; 361(1):9-16. PubMed ID: 28115553 [TBL] [Abstract][Full Text] [Related]
16. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Nguyen L; Matsumoto RR Behav Brain Res; 2015 Dec; 295():26-34. PubMed ID: 25804358 [TBL] [Abstract][Full Text] [Related]
17. Hippocampal Perineuronal Nets Are Required for the Sustained Antidepressant Effect of Ketamine. Donegan JJ; Lodge DJ Int J Neuropsychopharmacol; 2017 Apr; 20(4):354-358. PubMed ID: 27806991 [TBL] [Abstract][Full Text] [Related]
18. Neurovascular plasticity of the hippocampus one week after a single dose of ketamine in genetic rat model of depression. Ardalan M; Wegener G; Polsinelli B; Madsen TM; Nyengaard JR Hippocampus; 2016 Nov; 26(11):1414-1423. PubMed ID: 27440163 [TBL] [Abstract][Full Text] [Related]
19. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Koike H; Chaki S Behav Brain Res; 2014 Sep; 271():111-5. PubMed ID: 24909673 [TBL] [Abstract][Full Text] [Related]
20. What is the mechanism of Ketamine's rapid-onset antidepressant effect? A concise overview of the surprisingly large number of possibilities. Strasburger SE; Bhimani PM; Kaabe JH; Krysiak JT; Nanchanatt DL; Nguyen TN; Pough KA; Prince TA; Ramsey NS; Savsani KH; Scandlen L; Cavaretta MJ; Raffa RB J Clin Pharm Ther; 2017 Apr; 42(2):147-154. PubMed ID: 28111761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]