These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27546792)

  • 21. Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas.
    Mutlugun E; Samarskaya O; Ozel T; Cicek N; Gaponik N; Eychmüller A; Demir HV
    Opt Express; 2010 May; 18(10):10720-30. PubMed ID: 20588924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light harvesting and efficient energy transfer in dendritic systems: new strategy for functionalized near-infrared BF2-azadipyrromethenes.
    Yuan M; Yin X; Zheng H; Ouyang C; Zuo Z; Liu H; Li Y
    Chem Asian J; 2009 May; 4(5):707-13. PubMed ID: 19226502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles.
    Wu C; Zheng Y; Szymanski C; McNeill J
    J Phys Chem C Nanomater Interfaces; 2008 Feb; 112(6):1772-1781. PubMed ID: 19221582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis.
    Hao M; Sun G; Zuo M; Xu Z; Chen Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):10095-10100. PubMed ID: 31625651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators.
    Banal JL; Zhang B; Jones DJ; Ghiggino KP; Wong WW
    Acc Chem Res; 2017 Jan; 50(1):49-57. PubMed ID: 27992172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient photoinduced energy transfer in a newly developed hybrid SBA-15 photonic antenna.
    Cucinotta F; Carniato F; Devaux A; De Cola L; Marchese L
    Chemistry; 2012 Nov; 18(48):15310-5. PubMed ID: 23055456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exciton Transfer and Emergent Excitonic States in Oppositely-Charged Conjugated Polyelectrolyte Complexes.
    Hollingsworth WR; Segura C; Balderrama J; Lopez N; Schleissner P; Ayzner AL
    J Phys Chem B; 2016 Aug; 120(31):7767-74. PubMed ID: 27428604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Promotion of Förster resonance energy transfer in a saponite clay containing luminescent polyhedral oligomeric silsesquioxane and rhodamine dye.
    Olivero F; Carniato F; Bisio C; Marchese L
    Chem Asian J; 2014 Jan; 9(1):158-65. PubMed ID: 24124165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Efficient Artificial Light-Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Self-Assembly.
    Guo S; Song Y; He Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3163-3167. PubMed ID: 29383817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein.
    Ma YZ; Miller RA; Fleming GR; Francis MB
    J Phys Chem B; 2008 Jun; 112(22):6887-92. PubMed ID: 18471010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization.
    Kumar A; Saha R; Mukherjee PS
    Chem Sci; 2021 Mar; 12(14):5319-5329. PubMed ID: 34163765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CH
    Muthu C; Vijayan A; Nair VC
    Chem Asian J; 2017 May; 12(9):988-995. PubMed ID: 28301082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Conjugated Polymeric Supramolecular Network with Aggregation-Induced Emission Enhancement: An Efficient Light-Harvesting System with an Ultrahigh Antenna Effect.
    Xu L; Wang Z; Wang R; Wang L; He X; Jiang H; Tang H; Cao D; Tang BZ
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):9908-9913. PubMed ID: 31336023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial photosynthetic reaction centers coupled to light-harvesting antennas.
    Ghosh PK; Smirnov AY; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061138. PubMed ID: 22304071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).
    Lauterbach R; Liu J; Knoll W; Paulsen H
    Langmuir; 2010 Nov; 26(22):17315-21. PubMed ID: 20964348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles.
    Frigoli M; Ouadahi K; Larpent C
    Chemistry; 2009 Aug; 15(33):8319-30. PubMed ID: 19575425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.
    Aratani N; Kim D; Osuka A
    Acc Chem Res; 2009 Dec; 42(12):1922-34. PubMed ID: 19842697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA-organized artificial LHCs - testing the limits of chromophore segmentation.
    Bürki N; Grossenbacher E; Cannizzo A; Feurer T; Langenegger SM; Häner R
    Org Biomol Chem; 2020 Sep; 18(35):6818-6822. PubMed ID: 32936197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril.
    Luo Y; Zhang W; Ren Q; Tao Z; Xiao X
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29806-29812. PubMed ID: 35748110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile.
    Durchan M; Tichý J; Litvín R; Šlouf V; Gardian Z; Hříbek P; Vácha F; Polívka T
    J Phys Chem B; 2012 Aug; 116(30):8880-9. PubMed ID: 22764831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.