These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27547075)

  • 21. Developing Itô stochastic differential equation models for neuronal signal transduction pathways.
    Manninen T; Linne ML; Ruohonen K
    Comput Biol Chem; 2006 Aug; 30(4):280-91. PubMed ID: 16880117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An adaptive stepsize method for the chemical Langevin equation.
    Ilie S; Teslya A
    J Chem Phys; 2012 May; 136(18):184101. PubMed ID: 22583271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytical and Numerical Treatments of Conservative Diffusions and the Burgers Equation.
    Prodanov D
    Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation.
    Fulger D; Scalas E; Germano G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021122. PubMed ID: 18352002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media.
    Crevillén-García D; Power H
    R Soc Open Sci; 2017 Aug; 4(8):170203. PubMed ID: 28878974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Deterministic Approximation to Neural SDEs.
    Look A; Kandemir M; Rakitsch B; Peters J
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):4023-4037. PubMed ID: 36037461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations.
    Hutzenthaler M; Jentzen A; Kruse T; Anh Nguyen T; von Wurstemberger P
    Proc Math Phys Eng Sci; 2020 Dec; 476(2244):20190630. PubMed ID: 33408553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variable time-stepping in the pathwise numerical solution of the chemical Langevin equation.
    Ilie S
    J Chem Phys; 2012 Dec; 137(23):234110. PubMed ID: 23267474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computing generalized Langevin equations and generalized Fokker-Planck equations.
    Darve E; Solomon J; Kia A
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10884-9. PubMed ID: 19549838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling biochemical reaction systems by stochastic differential equations with reflection.
    Niu Y; Burrage K; Chen L
    J Theor Biol; 2016 May; 396():90-104. PubMed ID: 26920245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic maps, continuous approximation, and stable distribution.
    Kessler DA; Burov S
    Phys Rev E; 2017 Oct; 96(4-1):042139. PubMed ID: 29347550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.
    Klim S; Mortensen SB; Kristensen NR; Overgaard RV; Madsen H
    Comput Methods Programs Biomed; 2009 Jun; 94(3):279-89. PubMed ID: 19268387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Approximation methods for piecewise deterministic Markov processes and their costs.
    Kritzer P; Leobacher G; Szölgyenyi M; Thonhauser S
    Scand Actuar J; 2019; 2019(4):308-335. PubMed ID: 31058276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations.
    Wu F; Tian T; Rawlings JB; Yin G
    J Chem Phys; 2016 May; 144(17):174112. PubMed ID: 27155630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Statistical analysis of differential equations: introducing probability measures on numerical solutions.
    Conrad PR; Girolami M; Särkkä S; Stuart A; Zygalakis K
    Stat Comput; 2017; 27(4):1065-1082. PubMed ID: 32226237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deterministic approximation of stochastic spatially explicit model of actin-myosin interaction in discrete filament lattice.
    Mishchenko AM; Dotsenko OI; Taradina GV
    Gen Physiol Biophys; 2018 Jul; 37(4):363-374. PubMed ID: 29956669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force-linearization closure for non-Markovian Langevin systems with time delay.
    Loos SAM; Klapp SHL
    Phys Rev E; 2017 Jul; 96(1-1):012106. PubMed ID: 29347056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale temporal integrators for fluctuating hydrodynamics.
    Delong S; Sun Y; Griffith BE; Vanden-Eijnden E; Donev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063312. PubMed ID: 25615227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.