These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27547099)

  • 1. Propagation of elastic waves through textured polycrystals: application to ice.
    Maurel A; Lund F; Montagnat M
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140988. PubMed ID: 27547099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic wave propagation predictions for polycrystalline materials using three-dimensional synthetic microstructures: Phase velocity variations.
    Norouzian M; Turner JA
    J Acoust Soc Am; 2019 Apr; 145(4):2171. PubMed ID: 31046304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic wave velocity dispersion in polycrystals with elongated grains: Theoretical and numerical analysis.
    Huang M; Sha G; Huthwaite P; Rokhlin SI; Lowe MJS
    J Acoust Soc Am; 2020 Dec; 148(6):3645. PubMed ID: 33379920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of texture and grain shape on ultrasonic backscattering in polycrystals.
    Li J; Yang L; Rokhlin SI
    Ultrasonics; 2014 Sep; 54(7):1789-803. PubMed ID: 24630850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model.
    Taj M; Zhang J
    J Mech Behav Biomed Mater; 2014 Feb; 30():300-5. PubMed ID: 24361934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple scattering from assemblies of dislocation walls in three dimensions. Application to propagation in polycrystals.
    Maurel A; Pagneux V; Barra F; Lund F
    J Acoust Soc Am; 2007 Jun; 121(6):3418-31. PubMed ID: 17552693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers.
    Collis JM; Frank SD; Metzler AM; Preston KS
    J Acoust Soc Am; 2016 May; 139(5):2672. PubMed ID: 27250161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation and velocity of elastic waves in polycrystals with generally anisotropic grains: Analytic and numerical modeling.
    Sha G; Huang M; Lowe MJS; Rokhlin SI
    J Acoust Soc Am; 2020 Apr; 147(4):2442. PubMed ID: 32359302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube.
    Atabek HB
    Biophys J; 1968 May; 8(5):626-49. PubMed ID: 5699800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic wave propagation and scattering in solids with uniaxially aligned cracks.
    Yang L; Turner JA
    J Acoust Soc Am; 2003 Aug; 114(2):591-600. PubMed ID: 12942943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the nonlinear temperature dependence of elastic constants and wave velocities for solid media with applications to geologic materials.
    Yang J; Fu LY; Fu BY; Wang Z; Hou W
    J Acoust Soc Am; 2019 Sep; 146(3):1556. PubMed ID: 31590542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal elastic wave propagation in pulmonary parenchyma.
    Butler JP; Lehr JL; Drazen JM
    J Appl Physiol (1985); 1987 Apr; 62(4):1349-55. PubMed ID: 3597210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface/interface effects on the effective propagation constants of coherent waves in composites with random parallel nanofibers.
    Kong Z; Wei P; Jiao F
    J Acoust Soc Am; 2016 Jul; 140(1):486. PubMed ID: 27475172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-element and semi-analytical study of elastic wave propagation in strongly scattering polycrystals.
    Huang M; Huthwaite P; Rokhlin SI; Lowe MJS
    Proc Math Phys Eng Sci; 2022 Feb; 478(2258):20210850. PubMed ID: 35221773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic parabolic equation solutions for oceanic T-wave generation and propagation from deep seismic sources.
    Frank SD; Collis JM; Odom RI
    J Acoust Soc Am; 2015 Jun; 137(6):3534-43. PubMed ID: 26093440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-axis propagation of ultrasonic guided waves in thin orthotropic layers: theoretical analysis and dynamic holographic imaging measurement.
    Mukdadi OM; Datta SK; Telschow KL; Deason VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1581-93. PubMed ID: 11800121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress-dependent ultrasonic scattering in polycrystalline materials.
    Kube CM; Turner JA
    J Acoust Soc Am; 2016 Feb; 139(2):811-24. PubMed ID: 26936563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive Relations of Anisotropic Polycrystals: Self-Consistent Estimates.
    Li A; Zhao T; Lan Z; Huang M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical analysis of an Antarctic ice core-towards an integration of micro- and macrodynamics of polar ice.
    Weikusat I; Jansen D; Binder T; Eichler J; Faria SH; Wilhelms F; Kipfstuhl S; Sheldon S; Miller H; Dahl-Jensen D; Kleiner T
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2086):. PubMed ID: 28025296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.