These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27547347)

  • 1. Endurance of larch forest ecosystems in eastern Siberia under warming trends.
    Sato H; Kobayashi H; Iwahana G; Ohta T
    Ecol Evol; 2016 Aug; 6(16):5690-704. PubMed ID: 27547347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tree growth is connected with distribution and warming-induced degradation of permafrost in southern Siberia.
    Peng R; Liu H; Anenkhonov OA; Sandanov DV; Korolyuk AY; Shi L; Xu C; Dai J; Wang L
    Glob Chang Biol; 2022 Sep; 28(17):5243-5253. PubMed ID: 35652259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warming and CO2 enrichment modified the ecophysiological responses of Dahurian larch and Mongolia pine during the past century in the permafrost of northeastern China.
    Liu X; Zhao L; Voelker S; Xu G; Zeng X; Zhang X; Zhang L; Sun W; Zhang Q; Wu G; Li X
    Tree Physiol; 2019 Jan; 39(1):88-103. PubMed ID: 29920609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest.
    Ludwig SM; Alexander HD; Kielland K; Mann PJ; Natali SM; Ruess RW
    Glob Chang Biol; 2018 Dec; 24(12):5841-5852. PubMed ID: 30230664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia.
    Loranty MM; Berner LT; Taber ED; Kropp H; Natali SM; Alexander HD; Davydov SP; Zimov NS
    PLoS One; 2018; 13(3):e0194014. PubMed ID: 29565980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska.
    Pastick NJ; Duffy P; Genet H; Rupp TS; Wylie BK; Johnson KD; Jorgenson MT; Bliss N; McGuire AD; Jafarov EE; Knight JF
    Ecol Appl; 2017 Jul; 27(5):1383-1402. PubMed ID: 28390104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s.
    Frost GV; Epstein HE
    Glob Chang Biol; 2014 Apr; 20(4):1264-77. PubMed ID: 24115456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thawing permafrost can mitigate warming-induced drought stress in boreal forest trees.
    Kirdyanov AV; Saurer M; Arzac A; Knorre AA; Prokushkin AS; Churakova Sidorova OV; Arosio T; Bebchuk T; Siegwolf R; Büntgen U
    Sci Total Environ; 2024 Feb; 912():168858. PubMed ID: 38030001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.
    Berner LT; Beck PS; Bunn AG; Goetz SJ
    Glob Chang Biol; 2013 Nov; 19(11):3449-62. PubMed ID: 23813896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn isotope fractionation in a pristine larch forest on permafrost-dominated soils in Central Siberia.
    Viers J; Prokushkin AS; Pokrovsky OS; Kirdyanov AV; Zouiten C; Chmeleff J; Meheut M; Chabaux F; Oliva P; Dupré B
    Geochem Trans; 2015; 16():3. PubMed ID: 25931985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopic compositions of ground ice in near-surface permafrost in relation to vegetation and microtopography at the Taiga-Tundra boundary in the Indigirka River lowlands, northeastern Siberia.
    Takano S; Sugimoto A; Tei S; Liang M; Shingubara R; Morozumi T; Maximov TC
    PLoS One; 2019; 14(10):e0223720. PubMed ID: 31600327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe.
    Khansaritoreh E; Dulamsuren C; Klinge M; Ariunbaatar T; Bat-Enerel B; Batsaikhan G; Ganbaatar K; Saindovdon D; Yeruult Y; Tsogtbaatar J; Tuya D; Leuschner C; Hauck M
    Glob Chang Biol; 2017 Sep; 23(9):3675-3689. PubMed ID: 28470864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of an inverse climate-isotope relationship in soil water on the oxygen-isotope composition of Larix gmelinii in Siberia.
    Saurer M; Kirdyanov AV; Prokushkin AS; Rinne KT; Siegwolf RT
    New Phytol; 2016 Feb; 209(3):955-64. PubMed ID: 26610186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia.
    Knorre AA; Kirdyanov AV; Prokushkin AS; Krusic PJ; Büntgen U
    Sci Total Environ; 2019 Feb; 652():314-319. PubMed ID: 30366332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth decline linked to warming-induced water limitation in hemi-boreal forests.
    Wu X; Liu H; Guo D; Anenkhonov OA; Badmaeva NK; Sandanov DV
    PLoS One; 2012; 7(8):e42619. PubMed ID: 22916142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study.
    Wieczorek M; Kruse S; Epp LS; Kolmogorov A; Nikolaev AN; Heinrich I; Jeltsch F; Pestryakova LA; Zibulski R; Herzschuh U
    Ecology; 2017 Sep; 98(9):2343-2355. PubMed ID: 28475233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is subarctic forest advance able to keep pace with climate change?
    Rees WG; Hofgaard A; Boudreau S; Cairns DM; Harper K; Mamet S; Mathisen I; Swirad Z; Tutubalina O
    Glob Chang Biol; 2020 Jul; 26(7):3965-3977. PubMed ID: 32281711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity.
    Herzschuh U; Pestryakova LA; Savelieva LA; Heinecke L; Böhmer T; Biskaborn BK; Andreev A; Ramisch A; Shinneman AL; Birks HJ
    Nat Commun; 2013; 4():2408. PubMed ID: 24005763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe.
    Erasmi S; Klinge M; Dulamsuren C; Schneider F; Hauck M
    Environ Monit Assess; 2021 Mar; 193(4):200. PubMed ID: 33738573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unexpected greening in a boreal permafrost peatland undergoing forest loss is partially attributable to tree species turnover.
    Dearborn KD; Baltzer JL
    Glob Chang Biol; 2021 Jun; 27(12):2867-2882. PubMed ID: 33742732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.