These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27547516)

  • 1. Constant and seasonal drivers of bird communities in a wind farm: implications for conservation.
    Rosin ZM; Skórka P; Szymański P; Tobolka M; Luczak A; Tryjanowski P
    PeerJ; 2016; 4():e2105. PubMed ID: 27547516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of development of wind energy and associated changes in land use on bird densities in upland areas.
    Fernández-Bellon D; Wilson MW; Irwin S; O'Halloran J
    Conserv Biol; 2019 Apr; 33(2):413-422. PubMed ID: 30346052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of birds and mammals to long-established wind farms in India.
    Kumara HN; Babu S; Rao GB; Mahato S; Bhattacharya M; Rao NVR; Tamiliniyan D; Parengal H; Deepak D; Balakrishnan A; Bilaskar M
    Sci Rep; 2022 Jan; 12(1):1339. PubMed ID: 35079039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of bird and bat mortality at wind turbines in the Northeastern United States.
    Choi DY; Wittig TW; Kluever BM
    PLoS One; 2020; 15(8):e0238034. PubMed ID: 32857780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wind turbines in managed forests partially displace common birds.
    Rehling F; Delius A; Ellerbrok J; Farwig N; Peter F
    J Environ Manage; 2023 Feb; 328():116968. PubMed ID: 36521214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment.
    Thaxter CB; Buchanan GM; Carr J; Butchart SHM; Newbold T; Green RE; Tobias JA; Foden WB; O'Brien S; Pearce-Higgins JW
    Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28904135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Resident breeding bird responses to wind turbines: A functional and phylogenetic perspective].
    Ding ZF; Liang JC; Cai J; Wei L
    Ying Yong Sheng Tai Xue Bao; 2021 Sep; 32(9):3136-3144. PubMed ID: 34658198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms.
    Desholm M
    J Environ Manage; 2009 Jun; 90(8):2672-9. PubMed ID: 19299065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do terrestrial animals avoid areas close to turbines in functioning wind farms in agricultural landscapes?
    Łopucki R; Klich D; Gielarek S
    Environ Monit Assess; 2017 Jul; 189(7):343. PubMed ID: 28631229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing wind turbine avoidance behaviour of a migrating soaring bird.
    Santos CD; Ramesh H; Ferraz R; Franco AMA; Wikelski M
    Sci Rep; 2022 Apr; 12(1):6441. PubMed ID: 35440704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High vulnerability of juvenile Nathusius' pipistrelle bats (Pipistrellus nathusii) at wind turbines.
    Kruszynski C; Bailey LD; Bach L; Bach P; Fritze M; Lindecke O; Teige T; Voigt CC
    Ecol Appl; 2022 Mar; 32(2):e2513. PubMed ID: 34877754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes.
    Redlich S; Martin EA; Wende B; Steffan-Dewenter I
    PLoS One; 2018; 13(8):e0200438. PubMed ID: 30067851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the impact of marine wind farms on birds through movement modelling.
    Masden EA; Reeve R; Desholm M; Fox AD; Furness RW; Haydon DT
    J R Soc Interface; 2012 Sep; 9(74):2120-30. PubMed ID: 22552921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drivers of Bird Species Richness within Moist High-Altitude Grasslands in Eastern South Africa.
    Maphisa DH; Smit-Robinson H; Underhill LG; Altwegg R
    PLoS One; 2016; 11(10):e0162609. PubMed ID: 27706186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.
    Minderman J; Pendlebury CJ; Pearce-Higgins JW; Park KJ
    PLoS One; 2012; 7(7):e41177. PubMed ID: 22859969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.
    Smith HG; Dänhardt J; Lindström A; Rundlöf M
    Oecologia; 2010 Apr; 162(4):1071-9. PubMed ID: 20213151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of waterbird abundance and flight behavior to a coastal wind farm on the East Asian-Australasian Flyway.
    Bai ML; Chih WC; Lee PF; Lien YY
    Environ Monit Assess; 2021 Mar; 193(4):181. PubMed ID: 33694006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind turbines cause functional habitat loss for migratory soaring birds.
    Marques AT; Santos CD; Hanssen F; Muñoz AR; Onrubia A; Wikelski M; Moreira F; Palmeirim JM; Silva JP
    J Anim Ecol; 2020 Jan; 89(1):93-103. PubMed ID: 30762229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximity to forests drives bird conservation value of coffee plantations: implications for certification.
    Anand MO; Krishnaswamy J; Das A
    Ecol Appl; 2008 Oct; 18(7):1754-63. PubMed ID: 18839769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritizing Avian Species for Their Risk of Population-Level Consequences from Wind Energy Development.
    Beston JA; Diffendorfer JE; Loss SR; Johnson DH
    PLoS One; 2016; 11(3):e0150813. PubMed ID: 26963254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.