These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27547541)

  • 21. Regeneration of Transected Recurrent Laryngeal Nerve Using Hybrid-Transplantation of Skeletal Muscle-Derived Stem Cells and Bioabsorbable Scaffold.
    Kazuno A; Maki D; Yamato I; Nakajima N; Seta H; Soeda S; Ozawa S; Uchiyama Y; Tamaki T
    J Clin Med; 2018 Sep; 7(9):. PubMed ID: 30213120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesenchymal stem cells engrafted in a fibrin scaffold stimulate Schwann cell reactivity and axonal regeneration following sciatic nerve tubulization.
    Cartarozzi LP; Spejo AB; Ferreira RS; Barraviera B; Duek E; Carvalho JL; Góes AM; Oliveira AL
    Brain Res Bull; 2015 Mar; 112():14-24. PubMed ID: 25602253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of decellularized biphasic hierarchical myotendinous junction extracellular matrix for muscle regeneration.
    Zhao C; Wang S; Wang G; Su M; Song L; Chen J; Fan S; Lin X
    Acta Biomater; 2018 Mar; 68():15-28. PubMed ID: 29294376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mesenchymal stem cell sheet transplantation combined with locally released simvastatin enhances bone formation in a rat tibia osteotomy model.
    Qi Y; Zhao T; Yan W; Xu K; Shi Z; Wang J
    Cytotherapy; 2013 Jan; 15(1):44-56. PubMed ID: 23260085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair.
    Huang TF; Yew TL; Chiang ER; Ma HL; Hsu CY; Hsu SH; Hsu YT; Hung SC
    Am J Sports Med; 2013 May; 41(5):1117-25. PubMed ID: 23539044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skeletal muscle-derived cells repair peripheral nerve defects in mice.
    Chen ZX; Lu HB; Jin XL; Feng WF; Yang XN; Qi ZL
    Neural Regen Res; 2020 Jan; 15(1):152-161. PubMed ID: 31535664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [AN EXPERIMENTAL STUDY ON REPAIR OF SCIATIC NERVE INJURY BY Schwann-LIKE CELLS DERIVED FROM UMBILICAL CORD BLOOD MESENCHYMAL STEM CELLS].
    Wang X; Wang S; Xiao Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Feb; 29(2):213-20. PubMed ID: 26455153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bridging long gap peripheral nerve injury using skeletal muscle-derived multipotent stem cells.
    Tamaki T
    Neural Regen Res; 2014 Jul; 9(14):1333-6. PubMed ID: 25221587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep.
    Gerber C; Meyer DC; Schneeberger AG; Hoppeler H; von Rechenberg B
    J Bone Joint Surg Am; 2004 Sep; 86(9):1973-82. PubMed ID: 15342760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Comparison of distributions of muscle injection and intravenous administration of human mesenchymal stem cells in denervated muscles of the sciatic nerve injured rats].
    Liu Xx; Fan Ds; Zhang J; Zheng Jy; Ma Tm
    Beijing Da Xue Xue Bao Yi Xue Ban; 2008 Apr; 40(2):185-91. PubMed ID: 18458697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between functional deficit and severity of experimental fast-strain injury of rat skeletal muscle.
    Uchiyama Y; Tamaki T; Fukuda H
    Eur J Appl Physiol; 2001 Jul; 85(1-2):1-9. PubMed ID: 11513300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implantation of Schwann cells in rat tendon autografts as a model for peripheral nerve repair: long term effects on functional recovery.
    Arino H; Brandt J; Dahlin LB
    Scand J Plast Reconstr Surg Hand Surg; 2008; 42(6):281-5. PubMed ID: 18991168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle, and improve functional recovery in mice.
    Oliveira JT; Almeida FM; Biancalana A; Baptista AF; Tomaz MA; Melo PA; Martinez AM
    Neuroscience; 2010 Nov; 170(4):1295-303. PubMed ID: 20800664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allogenic Myocytes and Mesenchymal Stem Cells Partially Improve Fatty Rotator Cuff Degeneration in a Rat Model.
    Güleçyüz MF; Macha K; Pietschmann MF; Ficklscherer A; Sievers B; Roßbach BP; Jansson V; Müller PE
    Stem Cell Rev Rep; 2018 Dec; 14(6):847-859. PubMed ID: 29855989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histological changes in the human anterior cruciate ligament after rupture.
    Murray MM; Martin SD; Martin TL; Spector M
    J Bone Joint Surg Am; 2000 Oct; 82(10):1387-97. PubMed ID: 11057466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multipotent vascular stem cells contribute to neurovascular regeneration of peripheral nerve.
    Huang CW; Hsueh YY; Huang WC; Patel S; Li S
    Stem Cell Res Ther; 2019 Aug; 10(1):234. PubMed ID: 31376835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice.
    Okawa T; Kamiya H; Himeno T; Kato J; Seino Y; Fujiya A; Kondo M; Tsunekawa S; Naruse K; Hamada Y; Ozaki N; Cheng Z; Kito T; Suzuki H; Ito S; Oiso Y; Nakamura J; Isobe K
    Cell Transplant; 2013; 22(10):1767-83. PubMed ID: 23051637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dose-response relationship of mesenchymal stem cell transplantation and functional regeneration after severe skeletal muscle injury in rats.
    Winkler T; von Roth P; Matziolis G; Mehta M; Perka C; Duda GN
    Tissue Eng Part A; 2009 Mar; 15(3):487-92. PubMed ID: 18673090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rotator cuff regeneration using a bioabsorbable material with bone marrow-derived mesenchymal stem cells in a rabbit model.
    Yokoya S; Mochizuki Y; Natsu K; Omae H; Nagata Y; Ochi M
    Am J Sports Med; 2012 Jun; 40(6):1259-68. PubMed ID: 22491821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autologous bone marrow-derived cells enhance muscle strength following skeletal muscle crush injury in rats.
    Matziolis G; Winkler T; Schaser K; Wiemann M; Krocker D; Tuischer J; Perka C; Duda GN
    Tissue Eng; 2006 Feb; 12(2):361-7. PubMed ID: 16548694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.