BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27547819)

  • 1. Structure of the Essential
    Kuhn ML; Alexander E; Minasov G; Page HJ; Warwrzak Z; Shuvalova L; Flores KJ; Wilson DJ; Shi C; Aldrich CC; Anderson WF
    ACS Infect Dis; 2016 Aug; 2(8):579-591. PubMed ID: 27547819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis.
    Léger M; Gavalda S; Guillet V; van der Rest B; Slama N; Montrozier H; Mourey L; Quémard A; Daffé M; Marrakchi H
    Chem Biol; 2009 May; 16(5):510-9. PubMed ID: 19477415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components.
    Portevin D; de Sousa-D'Auria C; Montrozier H; Houssin C; Stella A; Lanéelle MA; Bardou F; Guilhot C; Daffé M
    J Biol Chem; 2005 Mar; 280(10):8862-74. PubMed ID: 15632194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis.
    Le NH; Molle V; Eynard N; Miras M; Stella A; Bardou F; Galandrin S; Guillet V; André-Leroux G; Bellinzoni M; Alzari P; Mourey L; Burlet-Schiltz O; Daffé M; Marrakchi H
    J Biol Chem; 2016 Oct; 291(43):22793-22805. PubMed ID: 27590338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assay development for identifying inhibitors of the mycobacterial FadD32 activity.
    Galandrin S; Guillet V; Rane RS; Léger M; N R; Eynard N; Das K; Balganesh TS; Mourey L; Daffé M; Marrakchi H
    J Biomol Screen; 2013 Jun; 18(5):576-87. PubMed ID: 23364516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32) Orthologs from Mycobacteria.
    Guillet V; Galandrin S; Maveyraud L; Ladevèze S; Mariaule V; Bon C; Eynard N; Daffé M; Marrakchi H; Mourey L
    J Biol Chem; 2016 Apr; 291(15):7973-89. PubMed ID: 26900152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria.
    Li W; Gu S; Fleming J; Bi L
    Sci Rep; 2015 Dec; 5():15493. PubMed ID: 26628098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Drug Repurposing Approach: Investigation of
    Ngidi NTP; Machaba KE; Mhlongo NN
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163931
    [No Abstract]   [Full Text] [Related]  

  • 9. The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis.
    Gavalda S; Léger M; van der Rest B; Stella A; Bardou F; Montrozier H; Chalut C; Burlet-Schiltz O; Marrakchi H; Daffé M; Quémard A
    J Biol Chem; 2009 Jul; 284(29):19255-64. PubMed ID: 19436070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AcpM, the meromycolate extension acyl carrier protein of Mycobacterium tuberculosis, is activated by the 4'-phosphopantetheinyl transferase PptT, a potential target of the multistep mycolic acid biosynthesis.
    Zimhony O; Schwarz A; Raitses-Gurevich M; Peleg Y; Dym O; Albeck S; Burstein Y; Shakked Z
    Biochemistry; 2015 Apr; 54(14):2360-71. PubMed ID: 25785780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function analysis of the acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis.
    Dym O; Albeck S; Peleg Y; Schwarz A; Shakked Z; Burstein Y; Zimhony O
    J Mol Biol; 2009 Nov; 393(4):937-50. PubMed ID: 19733180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32.
    Stanley SA; Kawate T; Iwase N; Shimizu M; Clatworthy AE; Kazyanskaya E; Sacchettini JC; Ioerger TR; Siddiqi NA; Minami S; Aquadro JA; Grant SS; Rubin EJ; Hung DT
    Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11565-70. PubMed ID: 23798446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of FadD32 and pks13-ACP domain from Corynebacterium diphtheriae.
    Chen R; Yuan J; Shi X; Tang W; Liu X
    Biochem Biophys Res Commun; 2022 Jan; 590():152-157. PubMed ID: 34974304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability.
    Veyron-Churlet R; Guerrini O; Mourey L; Daffé M; Zerbib D
    Mol Microbiol; 2004 Dec; 54(5):1161-72. PubMed ID: 15554959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions.
    Veyron-Churlet R; Bigot S; Guerrini O; Verdoux S; Malaga W; Daffé M; Zerbib D
    J Mol Biol; 2005 Nov; 353(4):847-58. PubMed ID: 16213523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis.
    Mohanty D; Sankaranarayanan R; Gokhale RS
    Tuberculosis (Edinb); 2011 Sep; 91(5):448-55. PubMed ID: 21601529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics Investigation into the Mechanism of Action of an Anti-tubercular Fatty Acid Analogue.
    Sakallioglu IT; Maroli AS; De Lima Leite A; Marshall DD; Evans BW; Zinniel DK; Dussault PH; Barletta RG; Powers R
    J Am Chem Soc; 2022 Nov; 144(46):21157-21173. PubMed ID: 36367461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids.
    Gokhale RS; Saxena P; Chopra T; Mohanty D
    Nat Prod Rep; 2007 Apr; 24(2):267-77. PubMed ID: 17389997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug screening approach against mycobacterial fatty acyl-AMP ligase FAAL32 renews the interest of the salicylanilide pharmacophore in the fight against tuberculosis.
    Le NH; Constant P; Tranier S; Nahoum V; Guillet V; Maveyraud L; Daffé M; Mourey L; Verhaeghe P; Marrakchi H
    Bioorg Med Chem; 2022 Oct; 71():116938. PubMed ID: 35933838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the development of potential inhibitors targeting FadD23 from Mycobacterium tuberculosis.
    Yan M; Ma M; Chen R; Cao Y; Zhang W; Liu X
    Acta Crystallogr F Struct Biol Commun; 2023 Aug; 79(Pt 8):208-216. PubMed ID: 37522751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.