These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 27548080)
41. Intervalence charge transfer luminescence: the anomalous luminescence of cerium-doped Cs₂LiLuCl₆ elpasolite. Seijo L; Barandiarán Z J Chem Phys; 2014 Dec; 141(21):214706. PubMed ID: 25481160 [TBL] [Abstract][Full Text] [Related]
42. Determination of the highest occupied molecular orbital and cationic structure of 2-chloropyridine by one-photon VUV-MATI spectroscopy and Franck-Condon fitting. Lee YR; Choi N; Kwon CH Phys Chem Chem Phys; 2020 Sep; 22(36):20858-20866. PubMed ID: 32914804 [TBL] [Abstract][Full Text] [Related]
43. Electronic structure of CeO studied by a four-component relativistic configuration interaction method. Moriyama H; Tatewaki H; Yamamoto S J Chem Phys; 2013 Jun; 138(22):224310. PubMed ID: 23781798 [TBL] [Abstract][Full Text] [Related]
44. Mass-analyzed threshold ionization and structural isomers of M3O4 (M = Sc, Y, and La). Wu L; Zhang C; Krasnokutski SA; Yang DS J Chem Phys; 2012 Aug; 137(8):084312. PubMed ID: 22938238 [TBL] [Abstract][Full Text] [Related]
45. The Role of Spin-Orbit Coupling in the Double-Ionization Photoelectron Spectra of XCN(2+) (X = Cl, Br, and I). Manna S; Mishra S J Phys Chem A; 2016 Mar; 120(9):1554-61. PubMed ID: 26881722 [TBL] [Abstract][Full Text] [Related]
46. Pulsed field ionization electron spectroscopy and molecular structure of aluminum uracil. Krasnokutski SA; Yang DS J Phys Chem A; 2007 Oct; 111(42):10567-73. PubMed ID: 17914779 [TBL] [Abstract][Full Text] [Related]
48. Effects of Spin-Orbit Coupling on Covalent Bonding and the Jahn-Teller Effect Are Revealed with the Natural Language of Spinors. Zeng T; Fedorov DG; Schmidt MW; Klobukowski M J Chem Theory Comput; 2011 Sep; 7(9):2864-75. PubMed ID: 26605477 [TBL] [Abstract][Full Text] [Related]
49. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained. Vícha J; Komorovsky S; Repisky M; Marek R; Straka M J Chem Theory Comput; 2018 Jun; 14(6):3025-3039. PubMed ID: 29676906 [TBL] [Abstract][Full Text] [Related]
50. A vacuum-ultraviolet laser pulsed field ionization-photoelectron study of sulfur monoxide (SO) and its cation (SO+). Lam CS; Wang H; Xu Y; Lau KC; Ng CY J Chem Phys; 2011 Apr; 134(14):144304. PubMed ID: 21495752 [TBL] [Abstract][Full Text] [Related]
51. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins. Kitagawa T; Ozaki Y; Kyogoku Y Adv Biophys; 1978; 11():153-96. PubMed ID: 27953 [TBL] [Abstract][Full Text] [Related]
52. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: determination of accurate ionization energy and cationic structure. Lee YR; Kang DW; Kim HL; Kwon CH J Chem Phys; 2014 Nov; 141(17):174303. PubMed ID: 25381510 [TBL] [Abstract][Full Text] [Related]
53. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-). Roy SK; Jian T; Lopez GV; Li WL; Su J; Bross DH; Peterson KA; Wang LS; Li J J Chem Phys; 2016 Feb; 144(8):084309. PubMed ID: 26931704 [TBL] [Abstract][Full Text] [Related]
54. Electronic structures and bonding of CeF: a frozen-core four-component relativistic configuration interaction study. Wasada-Tsutsui Y; Watanabe Y; Tatewaki H J Phys Chem A; 2007 Sep; 111(36):8877-83. PubMed ID: 17705453 [TBL] [Abstract][Full Text] [Related]
55. Spin-orbit and vibronic coupling in the ionic ground state of iodoacetylene from a rotationally resolved photoelectron spectrum. Gans B; Grassi G; Merkt F J Phys Chem A; 2013 Oct; 117(39):9353-62. PubMed ID: 23231536 [TBL] [Abstract][Full Text] [Related]
56. Photodetachment spectra of the PtX(4) (2-) (X=F,Cl,Br) dianions and their Jahn-Teller distortions: A fully relativistic study. Pernpointner M; Rapps T; Cederbaum LS J Chem Phys; 2008 Nov; 129(17):174302. PubMed ID: 19045342 [TBL] [Abstract][Full Text] [Related]
57. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity. Ji WX; Xu W; Schwarz WH; Wang SG J Comput Chem; 2015 Mar; 36(7):449-58. PubMed ID: 25565146 [TBL] [Abstract][Full Text] [Related]
58. Effects of (18)O isotopic substitution on the rotational spectra and potential splitting in the OH-OH2 complex: improved measurements for (16)OH-(16)OH2 and (18)OH-(18)OH2, new measurements for the mixed isotopic forms, and ab initio calculations of the (2)A'-(2)A" energy separation. Brauer CS; Sedo G; Dahlke E; Wu S; Grumstrup EM; Leopold KR; Marshall MD; Leung HO; Truhlar DG J Chem Phys; 2008 Sep; 129(10):104304. PubMed ID: 19044910 [TBL] [Abstract][Full Text] [Related]
59. Accurate calculations on 12 Λ-S and 28 Ω states of BN+ cation: potential energy curves, spectroscopic parameters and spin-orbit coupling. Shi D; Liu Q; Sun J; Zhu Z Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():571-81. PubMed ID: 24334021 [TBL] [Abstract][Full Text] [Related]
60. Understanding the Electronic Factors Responsible for Ligand Spin-Orbit NMR Shielding in Transition-Metal Complexes. Vícha J; Foroutan-Nejad C; Pawlak T; Munzarová ML; Straka M; Marek R J Chem Theory Comput; 2015 Apr; 11(4):1509-17. PubMed ID: 26574362 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]